Solubility determination and prediction for FOX-7 in three binary solvents at different temperatures

IF 1.7 3区 材料科学 Q3 CHEMISTRY, APPLIED
Qianhua Liu, Chongwei An, Quntao Huang, Bin Liu, Ruixuan Xu, Sheng Kong, Jiechao Wang, Minchang Wang, Ning Liu
{"title":"Solubility determination and prediction for FOX-7 in three binary solvents at different temperatures","authors":"Qianhua Liu, Chongwei An, Quntao Huang, Bin Liu, Ruixuan Xu, Sheng Kong, Jiechao Wang, Minchang Wang, Ning Liu","doi":"10.1080/07370652.2022.2028034","DOIUrl":null,"url":null,"abstract":"ABSTRACT The solid–liquid equilibrium and thermodynamic properties of FOX-7 in three binary mixed solvents (N-methyl pyrrolidone-water, N,N-dimethylacetamide-water and 1,4-Butyrolactone-water) are studied by focused beam reflectance measurement (FBRM) dynamic detection method and the solubility is predicted by conductor-like screening model for real solvents (COSMO-RS) under atmospheric pressure from 298.15 to 343.15 K. The results show that the solubility of FOX-7 increase with the increasing temperature and the mole fraction of N-methyl pyrrolidone, N,N-dimethylacetamide and 1,4-Butyrolactone. The solubility data can be well correlated by Apelblat, van’t Hoff and Yaws equation. The data of hybrid thermodynamic parameters (including the hybrid enthalpy, entropy, and Gibbs energy) show that the dissolution process is endothermic, non-spontaneous and enthalpy driven. In addition, COSMO-RS can accurately predict the increasing trend of solubility with increasing of temperature and mole fraction of solvent. However, the COSMO-RS overestimates solubility in three binary solvents except for x NMP = 0.1575, the average mean squared quadratic error becomes larger with an increasing mole fraction of water. Solubility data and thermodynamic parameters can lay a foundation for the crystallization and spheroidization modification of FOX-7.","PeriodicalId":15754,"journal":{"name":"Journal of Energetic Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energetic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/07370652.2022.2028034","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The solid–liquid equilibrium and thermodynamic properties of FOX-7 in three binary mixed solvents (N-methyl pyrrolidone-water, N,N-dimethylacetamide-water and 1,4-Butyrolactone-water) are studied by focused beam reflectance measurement (FBRM) dynamic detection method and the solubility is predicted by conductor-like screening model for real solvents (COSMO-RS) under atmospheric pressure from 298.15 to 343.15 K. The results show that the solubility of FOX-7 increase with the increasing temperature and the mole fraction of N-methyl pyrrolidone, N,N-dimethylacetamide and 1,4-Butyrolactone. The solubility data can be well correlated by Apelblat, van’t Hoff and Yaws equation. The data of hybrid thermodynamic parameters (including the hybrid enthalpy, entropy, and Gibbs energy) show that the dissolution process is endothermic, non-spontaneous and enthalpy driven. In addition, COSMO-RS can accurately predict the increasing trend of solubility with increasing of temperature and mole fraction of solvent. However, the COSMO-RS overestimates solubility in three binary solvents except for x NMP = 0.1575, the average mean squared quadratic error becomes larger with an increasing mole fraction of water. Solubility data and thermodynamic parameters can lay a foundation for the crystallization and spheroidization modification of FOX-7.
FOX-7在三种二元溶剂中不同温度下溶解度的测定与预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energetic Materials
Journal of Energetic Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
4.80%
发文量
34
审稿时长
1.8 months
期刊介绍: The Journal of Energetic Materials fills the need for an international forum of scientific and technical interchange in the disciplines of explosives, propellants, and pyrotechnics. It is a refereed publication which is published quarterly. Molecular orbital calculations, synthetic and analytical chemistry, formulation, ignition and detonation properties, thermal decomposition, hazards testing, biotechnology, and toxicological and environmental aspects of energetic materials production are appropriate subjects for articles submitted to the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信