{"title":"Bio-inspired Approaches for OFDM Based Cognitive Radio","authors":"N. A. Saoucha, B. Benmammar","doi":"10.1504/IJIPT.2019.10019368","DOIUrl":null,"url":null,"abstract":"Link adaptation algorithms design for OFDM-based cognitive radio networks is a challenging task. The main concern is to provide a high quality of service for the secondary user while the mutual interference between this last and the primary user persists within a tolerable range. This issue can be formulated as a multiobjective optimisation constraint problem. To tackle this optimisation problem in a multiobjective constraint framework, in this paper we exploit three of the most recent powerful bio-inspired algorithms: firefly, bat, and cuckoo search. Simulation results revealed that, in contrast to the classical genetic algorithm and particle swarm optimisation-based link adaptation, our proposed algorithms exhibit better performance in terms of convergence speed and solution quality with saving rates reaching over 98.93% and 46.60%, respectively.","PeriodicalId":42931,"journal":{"name":"International Journal of Internet Protocol Technology","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Internet Protocol Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIPT.2019.10019368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
Link adaptation algorithms design for OFDM-based cognitive radio networks is a challenging task. The main concern is to provide a high quality of service for the secondary user while the mutual interference between this last and the primary user persists within a tolerable range. This issue can be formulated as a multiobjective optimisation constraint problem. To tackle this optimisation problem in a multiobjective constraint framework, in this paper we exploit three of the most recent powerful bio-inspired algorithms: firefly, bat, and cuckoo search. Simulation results revealed that, in contrast to the classical genetic algorithm and particle swarm optimisation-based link adaptation, our proposed algorithms exhibit better performance in terms of convergence speed and solution quality with saving rates reaching over 98.93% and 46.60%, respectively.
期刊介绍:
The IJIPT provides an open forum for researchers, academics, engineers, network managers, and service providers in Internet Protocol Technology. Extensive exchange of information will be provided on new protocols, standards, services, and various applications in this area.