A. Konovalenko, V. Zhirnov, O. Shablykin, O. Shablykina, V. Moskvina, V. Brovarets
{"title":"The effect of heterocyclic substituent at C-3 position of 1-(4-methyl-piperazin-1-yl)isoquinolines on their anticancer activity","authors":"A. Konovalenko, V. Zhirnov, O. Shablykin, O. Shablykina, V. Moskvina, V. Brovarets","doi":"10.7124/bc.000a71","DOIUrl":null,"url":null,"abstract":"Aim. A comparative analysis of the anti-cancer activity of 1-(4-methylpiperazin-1-yl)isoqui-nolines with different heteroaromatic substituents in С-3 position: 2-methylthiazol-4-yl, 2-phenylthiazol-4-yl, 2-(pyridin-4-yl)thiazol-4-yl, imidazo[2,1- b ]thiazol-6-yl, quinoxalin-2-yl, 6,7-dimethylquinoxalin-2-yl. Methods. Biological tests; statistic methods. Results. In vitro screening of the anticancer activity showed that the derivatives with 2-phenylthiazol-4-yl, quinoxaline-2-yl, 6,7-dimethylquinoxalin-2-yl substituents demonstrated the highest level of anticancer activity; however, they were inferior to 2-(pyridin-4-yl)thiazol-4-yl. The product with the 2-methylthiazol-4-yl residue almost did not demonstrated cytotoxicity. Comparative analysis showed no significant correlation with known drugs; hence these compounds have specific molecular targets. Conclusions. The resulting 1-amino-3-hetarylisoquinolines are a promising class of compounds for anticancer drug development. The level and direction of the activity significantly depend on the nature of heterocyclic substituents.","PeriodicalId":39444,"journal":{"name":"Biopolymers and Cell","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers and Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7124/bc.000a71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Aim. A comparative analysis of the anti-cancer activity of 1-(4-methylpiperazin-1-yl)isoqui-nolines with different heteroaromatic substituents in С-3 position: 2-methylthiazol-4-yl, 2-phenylthiazol-4-yl, 2-(pyridin-4-yl)thiazol-4-yl, imidazo[2,1- b ]thiazol-6-yl, quinoxalin-2-yl, 6,7-dimethylquinoxalin-2-yl. Methods. Biological tests; statistic methods. Results. In vitro screening of the anticancer activity showed that the derivatives with 2-phenylthiazol-4-yl, quinoxaline-2-yl, 6,7-dimethylquinoxalin-2-yl substituents demonstrated the highest level of anticancer activity; however, they were inferior to 2-(pyridin-4-yl)thiazol-4-yl. The product with the 2-methylthiazol-4-yl residue almost did not demonstrated cytotoxicity. Comparative analysis showed no significant correlation with known drugs; hence these compounds have specific molecular targets. Conclusions. The resulting 1-amino-3-hetarylisoquinolines are a promising class of compounds for anticancer drug development. The level and direction of the activity significantly depend on the nature of heterocyclic substituents.
Biopolymers and CellBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.10
自引率
0.00%
发文量
9
期刊介绍:
“Biopolymer and cell” is published since 1985 at the Institute of Molecular Biology and Genetics NAS of Ukraine under the supervision of the National Academy of Sciences of Ukraine. Our journal covers a wide scope of problems related to molecular biology and genetics including structural and functional genomics, transcriptomics, proteomics, bioinformatics, biomedicine, molecular enzymology, molecular virology and immunology, theoretical bases of biotechnology, physics and physical chemistry of proteins and nucleic acids and bioorganic chemistry.