On the Saxl graphs of primitive groups with soluble stabilisers

Q3 Mathematics
Timothy C. Burness, Hongdi Huang
{"title":"On the Saxl graphs of primitive groups with soluble stabilisers","authors":"Timothy C. Burness, Hongdi Huang","doi":"10.5802/alco.238","DOIUrl":null,"url":null,"abstract":"Let G be a transitive permutation group on a finite set Ω and recall that a base for G is a subset of Ω with trivial pointwise stabiliser. The base size of G , denoted b ( G ), is the minimal size of a base. If b ( G ) = 2 then we can study the Saxl graph Σ( G ) of G , which has vertex set Ω and two vertices are adjacent if and only if they form a base. This is a vertex-transitive graph, which is conjectured to be connected with diameter at most 2 when G is primitive. In this paper, we combine probabilistic and computational methods to prove a strong form of this conjecture for all almost simple primitive groups with soluble point stabilisers. In this setting, we also establish best possible lower bounds on the clique and independence numbers of Σ( G ) and we determine the groups with a unique regular suborbit, which can be interpreted in terms of the valency of Σ( G ).","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Let G be a transitive permutation group on a finite set Ω and recall that a base for G is a subset of Ω with trivial pointwise stabiliser. The base size of G , denoted b ( G ), is the minimal size of a base. If b ( G ) = 2 then we can study the Saxl graph Σ( G ) of G , which has vertex set Ω and two vertices are adjacent if and only if they form a base. This is a vertex-transitive graph, which is conjectured to be connected with diameter at most 2 when G is primitive. In this paper, we combine probabilistic and computational methods to prove a strong form of this conjecture for all almost simple primitive groups with soluble point stabilisers. In this setting, we also establish best possible lower bounds on the clique and independence numbers of Σ( G ) and we determine the groups with a unique regular suborbit, which can be interpreted in terms of the valency of Σ( G ).
具有可溶性稳定剂的原始群的Saxl图
设G是有限集上的传递置换群Ω 回想一下,G的基是Ω 使用琐碎的逐点稳定器。G的基底尺寸,表示为b(G),是基底的最小尺寸。如果b(G)=2,则我们可以研究具有顶点集的G的Saxl图∑(G)Ω 并且两个顶点是相邻的,当且仅当它们形成基。这是一个顶点传递图,当G是基元时,它被推测与直径至多为2的图相连。在本文中,我们将概率和计算方法相结合,证明了所有具有可解点稳定器的几乎简单基群的这个猜想的一个强形式。在这个设置中,我们还建立了∑(G)的团数和独立数的最佳可能下界,并确定了具有唯一正则子比特的群,该子比特可以用∑(G)的价态来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信