{"title":"On a Functional Equation Appearing on the Margins of a Mean Invariance Problem","authors":"J. Jarczyk, W. Jarczyk","doi":"10.2478/amsil-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by Bαω the Bajraktarević mean generated by α and weighted by ω: Bωα(x,y)=α-1(ω(x)ω(x)+ω(y)α(x)+ω(y)ω(x)+ω(y)α(y)), x,y∈I. B_\\omega ^\\alpha \\left({x,y} \\right) = {\\alpha ^{- 1}}\\left({{{\\omega \\left(x \\right)} \\over {\\omega \\left(x \\right) + \\omega \\left(y \\right)}}\\alpha \\left(x \\right) + {{\\omega \\left(y \\right)} \\over {\\omega \\left(x \\right) + \\omega \\left(y \\right)}}\\alpha \\left(y \\right)} \\right),\\,\\,\\,x,y \\in I. We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation r(x)Bsϕ(x,y)+r(y)Btψ(x,y)=r(x)x+r(y)y, r\\left(x \\right)B_s^\\varphi \\left({x,y} \\right) + r\\left(y \\right)B_t^\\psi \\left({x,y} \\right) = r\\left(x \\right)x + r\\left(y \\right)y, where r, s, t : I → (0, +∞) are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"103 - 96"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by Bαω the Bajraktarević mean generated by α and weighted by ω: Bωα(x,y)=α-1(ω(x)ω(x)+ω(y)α(x)+ω(y)ω(x)+ω(y)α(y)), x,y∈I. B_\omega ^\alpha \left({x,y} \right) = {\alpha ^{- 1}}\left({{{\omega \left(x \right)} \over {\omega \left(x \right) + \omega \left(y \right)}}\alpha \left(x \right) + {{\omega \left(y \right)} \over {\omega \left(x \right) + \omega \left(y \right)}}\alpha \left(y \right)} \right),\,\,\,x,y \in I. We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation r(x)Bsϕ(x,y)+r(y)Btψ(x,y)=r(x)x+r(y)y, r\left(x \right)B_s^\varphi \left({x,y} \right) + r\left(y \right)B_t^\psi \left({x,y} \right) = r\left(x \right)x + r\left(y \right)y, where r, s, t : I → (0, +∞) are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.