On a Functional Equation Appearing on the Margins of a Mean Invariance Problem

IF 0.4 Q4 MATHEMATICS
J. Jarczyk, W. Jarczyk
{"title":"On a Functional Equation Appearing on the Margins of a Mean Invariance Problem","authors":"J. Jarczyk, W. Jarczyk","doi":"10.2478/amsil-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by Bαω the Bajraktarević mean generated by α and weighted by ω: Bωα(x,y)=α-1(ω(x)ω(x)+ω(y)α(x)+ω(y)ω(x)+ω(y)α(y)),   x,y∈I. B_\\omega ^\\alpha \\left({x,y} \\right) = {\\alpha ^{- 1}}\\left({{{\\omega \\left(x \\right)} \\over {\\omega \\left(x \\right) + \\omega \\left(y \\right)}}\\alpha \\left(x \\right) + {{\\omega \\left(y \\right)} \\over {\\omega \\left(x \\right) + \\omega \\left(y \\right)}}\\alpha \\left(y \\right)} \\right),\\,\\,\\,x,y \\in I. We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation r(x)Bsϕ(x,y)+r(y)Btψ(x,y)=r(x)x+r(y)y, r\\left(x \\right)B_s^\\varphi \\left({x,y} \\right) + r\\left(y \\right)B_t^\\psi \\left({x,y} \\right) = r\\left(x \\right)x + r\\left(y \\right)y, where r, s, t : I → (0, +∞) are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"103 - 96"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by Bαω the Bajraktarević mean generated by α and weighted by ω: Bωα(x,y)=α-1(ω(x)ω(x)+ω(y)α(x)+ω(y)ω(x)+ω(y)α(y)),   x,y∈I. B_\omega ^\alpha \left({x,y} \right) = {\alpha ^{- 1}}\left({{{\omega \left(x \right)} \over {\omega \left(x \right) + \omega \left(y \right)}}\alpha \left(x \right) + {{\omega \left(y \right)} \over {\omega \left(x \right) + \omega \left(y \right)}}\alpha \left(y \right)} \right),\,\,\,x,y \in I. We find a necessary integral formula for all possible three times differentiable solutions (φ, ψ) of the functional equation r(x)Bsϕ(x,y)+r(y)Btψ(x,y)=r(x)x+r(y)y, r\left(x \right)B_s^\varphi \left({x,y} \right) + r\left(y \right)B_t^\psi \left({x,y} \right) = r\left(x \right)x + r\left(y \right)y, where r, s, t : I → (0, +∞) are three times differentiable functions and the first derivatives of φ, ψ and r do not vanish. However, we show that not every pair (φ, ψ) given by the found formula actually satisfies the above equation.
关于一个出现在均值不变问题边值上的函数方程
摘要给定在区间I上定义的连续严格单调实值函数α和函数ω:I→ (0,+∞)我们用Bαω表示由α生成并由ω加权的Bajraktarević均值:Bω,   x、 y∈I。B_\omega^\alpha\left({x,y}\right)={\alpha^{-1}}\left({{\omega\lift(x\right)}\over{\omega\left(x\right)+\omega\ left(y\right)}\over{omega\left。我们为函数方程r(x)Bs(x,y)+r(y)Btψ→ (0,+∞)是三次可微函数,φ,ψ和r的一阶导数不消失。然而,我们证明,并不是由所发现的公式给出的每对(φ,ψ)都满足上述方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信