{"title":"Forecasting the Covolatility of Coffee Arabica and Crude Oil Prices: A Multivariate GARCH Approach with High-Frequency Data","authors":"Dawit Yeshiwas, Yebelay Berelie","doi":"10.1155/2020/1424020","DOIUrl":null,"url":null,"abstract":"Forecasting the covolatility of asset return series is becoming the subject of extensive research among academics, practitioners, and portfolio managers. This paper estimates a variety of multivariate GARCH models using weekly closing price (in USD/barrel) of Brent crude oil and weekly closing prices (in USD/pound) of Coffee Arabica and compares the forecasting performance of these models based on high-frequency intraday data which allows for a more precise realized volatility measurement. The study used weekly price data to explicitly model covolatility and employed high-frequency intraday data to assess model forecasting performance. The analysis points to the conclusion that the varying conditional correlation (VCC) model with Student’s t distributed innovation terms is the most accurate volatility forecasting model in the context of our empirical setting. We recommend and encourage future researchers studying the forecasting performance of MGARCH models to pay particular attention to the measurement of realized volatility and employ high-frequency data whenever feasible.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/1424020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/1424020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Forecasting the covolatility of asset return series is becoming the subject of extensive research among academics, practitioners, and portfolio managers. This paper estimates a variety of multivariate GARCH models using weekly closing price (in USD/barrel) of Brent crude oil and weekly closing prices (in USD/pound) of Coffee Arabica and compares the forecasting performance of these models based on high-frequency intraday data which allows for a more precise realized volatility measurement. The study used weekly price data to explicitly model covolatility and employed high-frequency intraday data to assess model forecasting performance. The analysis points to the conclusion that the varying conditional correlation (VCC) model with Student’s t distributed innovation terms is the most accurate volatility forecasting model in the context of our empirical setting. We recommend and encourage future researchers studying the forecasting performance of MGARCH models to pay particular attention to the measurement of realized volatility and employ high-frequency data whenever feasible.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.