Lie symmetries, exact solutions, and conservation laws of the nonlinear time-fractional Benjamin-Ono equation

IF 1.1 Q2 MATHEMATICS, APPLIED
F. Alizadeh, M. S. Hashemi, A. Badali
{"title":"Lie symmetries, exact solutions, and conservation laws of the nonlinear time-fractional Benjamin-Ono equation","authors":"F. Alizadeh, M. S. Hashemi, A. Badali","doi":"10.22034/CMDE.2021.45436.1911","DOIUrl":null,"url":null,"abstract":"In this work, we use the symmetry of the Lie group analysis as one of the powerful tools which that deals with the wide class of fractional order differential equation in the Riemann-Liouville concept. We employ the classical Lie symmetries to obtain similarity reductions of nonlinear time-fractional Benjamin-Ono equation and then, we find the related exact solutions for the derived generators. Finally, according to the Lie symmetry generators obtained, we construct conservation laws for related classical vector fields of time-fractional Benjamin-Ono equation.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.45436.1911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we use the symmetry of the Lie group analysis as one of the powerful tools which that deals with the wide class of fractional order differential equation in the Riemann-Liouville concept. We employ the classical Lie symmetries to obtain similarity reductions of nonlinear time-fractional Benjamin-Ono equation and then, we find the related exact solutions for the derived generators. Finally, according to the Lie symmetry generators obtained, we construct conservation laws for related classical vector fields of time-fractional Benjamin-Ono equation.
非线性时间分数阶Benjamin Ono方程的李对称性、精确解和守恒定律
在这项工作中,我们使用李群分析的对称性作为处理Riemann-Liouville概念中广泛的分数阶微分方程的有力工具之一。利用经典的Lie对称性,得到了非线性时间分数阶Benjamin-Ono方程的相似约简,并得到了相应的精确解。最后,根据得到的李对称发生器,构造了时间分数阶Benjamin-Ono方程相关经典向量场的守恒律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信