Shaping liquid films by dielectrophoresis

IF 2.8 Q2 MECHANICS
I. Gabay, Federico Paratore, E. Boyko, A. Ramos, A. Gat, M. Bercovici
{"title":"Shaping liquid films by dielectrophoresis","authors":"I. Gabay, Federico Paratore, E. Boyko, A. Ramos, A. Gat, M. Bercovici","doi":"10.1017/flo.2021.13","DOIUrl":null,"url":null,"abstract":"Graphical Abstract Abstract We present a theoretical model and experimental demonstration of thin liquid film deformations due to a dielectric force distribution established by surface electrodes. We model the spatial electric field produced by a pair of parallel electrodes and use it to evaluate the stress on the liquid–air interface through Maxwell stresses. By coupling this force with the Young–Laplace equation, we obtain the deformation of the interface. To validate our theory, we design an experimental set-up which uses microfabricated electrodes to achieve spatial dielectrophoretic actuation of a thin liquid film, while providing measurements of microscale deformations through digital holographic microscopy. We characterize the deformation as a function of the electrode-pair geometry and film thickness, showing very good agreement with the model. Based on the insights from the characterization of the system, we pattern conductive lines of electrode pairs on the surface of a microfluidic chamber and demonstrate the ability to produce complex two-dimensional deformations. The films can remain in liquid form and be dynamically modulated between different configurations or polymerized to create solid structures with high surface quality.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2021.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

Abstract

Graphical Abstract Abstract We present a theoretical model and experimental demonstration of thin liquid film deformations due to a dielectric force distribution established by surface electrodes. We model the spatial electric field produced by a pair of parallel electrodes and use it to evaluate the stress on the liquid–air interface through Maxwell stresses. By coupling this force with the Young–Laplace equation, we obtain the deformation of the interface. To validate our theory, we design an experimental set-up which uses microfabricated electrodes to achieve spatial dielectrophoretic actuation of a thin liquid film, while providing measurements of microscale deformations through digital holographic microscopy. We characterize the deformation as a function of the electrode-pair geometry and film thickness, showing very good agreement with the model. Based on the insights from the characterization of the system, we pattern conductive lines of electrode pairs on the surface of a microfluidic chamber and demonstrate the ability to produce complex two-dimensional deformations. The films can remain in liquid form and be dynamically modulated between different configurations or polymerized to create solid structures with high surface quality.
通过介质电泳形成液体薄膜
图形摘要摘要我们提出了由表面电极建立的介电力分布引起的薄液膜变形的理论模型和实验演示。我们对一对平行电极产生的空间电场进行了建模,并使用它通过麦克斯韦应力来评估液体-空气界面上的应力。通过将该力与Young-Laplace方程耦合,我们获得了界面的变形。为了验证我们的理论,我们设计了一个实验装置,该装置使用微制造的电极来实现薄液膜的空间介电泳驱动,同时通过数字全息显微镜提供微尺度变形的测量。我们将变形表征为电极对几何形状和膜厚度的函数,显示出与模型非常好的一致性。基于系统表征的见解,我们在微流体室的表面上绘制电极对的导线图案,并展示了产生复杂二维变形的能力。膜可以保持为液体形式,并在不同配置之间动态调节或聚合以产生具有高表面质量的固体结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信