{"title":"Two stars theorems for traces of the Zygmund space","authors":"A. Brudnyi","doi":"10.1090/spmj/1744","DOIUrl":null,"url":null,"abstract":"<p>For a Banach space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> defined in terms of a big-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O\">\n <mml:semantics>\n <mml:mi>O</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">O</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> condition and its subspace <italic>x</italic> defined by the corresponding little-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"o\">\n <mml:semantics>\n <mml:mi>o</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">o</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> condition, the biduality property (generalizing the concept of reflexivity) asserts that the bidual of <italic>x</italic> is naturally isometrically isomorphic to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The property is known for pairs of many classical function spaces (such as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis script l Subscript normal infinity Baseline comma c 0 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>c</mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\ell _\\infty , c_0)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, (BMO, VMO), (Lip, lip), etc.) and plays an important role in the study of their geometric structure. The present paper is devoted to the biduality property for traces to closed subsets <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S\\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a generalized Zygmund space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z Superscript omega Baseline left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>Z</mml:mi>\n <mml:mi>ω<!-- ω --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z^\\omega (\\mathbb {R}^n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The method of the proof is based on a careful analysis of the structure of geometric preduals of the trace spaces along with a powerful finiteness theorem for the trace spaces <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z Superscript omega Baseline left-parenthesis double-struck upper R Superscript n Baseline right-parenthesis vertical-bar Subscript upper S Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>Z</mml:mi>\n <mml:mi>ω<!-- ω --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>S</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z^\\omega (\\mathbb {R}^n)|_S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1744","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a Banach space XX defined in terms of a big-OO condition and its subspace x defined by the corresponding little-oo condition, the biduality property (generalizing the concept of reflexivity) asserts that the bidual of x is naturally isometrically isomorphic to XX. The property is known for pairs of many classical function spaces (such as (ℓ∞,c0)(\ell _\infty , c_0), (BMO, VMO), (Lip, lip), etc.) and plays an important role in the study of their geometric structure. The present paper is devoted to the biduality property for traces to closed subsets S⊂RnS\subset \mathbb {R}^n of a generalized Zygmund space Zω(Rn)Z^\omega (\mathbb {R}^n). The method of the proof is based on a careful analysis of the structure of geometric preduals of the trace spaces along with a powerful finiteness theorem for the trace spaces Zω(Rn)|SZ^\omega (\mathbb {R}^n)|_S.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.