Leave-one-out evaluation of the nearest feature line and the rectified nearest feature line segment classifiers using Multi-core architectures

Ana-Lorena Uribe-Hurtado, M. Orozco-Alzate, Eduardo-José Villegas-Jaramillo
{"title":"Leave-one-out evaluation of the nearest feature line and the rectified nearest feature line segment classifiers using Multi-core architectures","authors":"Ana-Lorena Uribe-Hurtado, M. Orozco-Alzate, Eduardo-José Villegas-Jaramillo","doi":"10.17230/INGCIENCIA.14.27.4","DOIUrl":null,"url":null,"abstract":"In this paper we present the parallelization of the leave-one-out test: areproducible test that is, in general, computationally expensive. Paral-lelization was implemented on multi-core multi-threaded architectures, us-ing the Flynn Single Instruction Multiple Data taxonomy. This techniquewas used for the preprocessing and processing stages of two classificationalgorithms that are oriented to enrich the representation in small samplecases: the nearest feature line (NFL) algorithm and the rectified nearestfeature line segment (RNFLS) algorithm. Results show an accelerationof up to 18.17 times with the smallest dataset and 29.91 times with thelargest one, using the most costly algorithm (RNFLS) whose complexityisO(n4). The paper also shows the pseudo-codes of the serial and parallel algorithms using, in the latter case, a notation that describes the way theparallelization was carried out as a function of the threads.","PeriodicalId":30405,"journal":{"name":"Ingenieria y Ciencia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17230/INGCIENCIA.14.27.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present the parallelization of the leave-one-out test: areproducible test that is, in general, computationally expensive. Paral-lelization was implemented on multi-core multi-threaded architectures, us-ing the Flynn Single Instruction Multiple Data taxonomy. This techniquewas used for the preprocessing and processing stages of two classificationalgorithms that are oriented to enrich the representation in small samplecases: the nearest feature line (NFL) algorithm and the rectified nearestfeature line segment (RNFLS) algorithm. Results show an accelerationof up to 18.17 times with the smallest dataset and 29.91 times with thelargest one, using the most costly algorithm (RNFLS) whose complexityisO(n4). The paper also shows the pseudo-codes of the serial and parallel algorithms using, in the latter case, a notation that describes the way theparallelization was carried out as a function of the threads.
使用多核架构对最近的特征线和校正的最近的特征线段分类器进行留一评估
在本文中,我们提出了“留一”测试的并行化:一个可生产的测试,通常计算成本很高。并行化是在多核多线程体系结构上实现的,使用Flynn单指令多数据分类法。该技术用于两种分类算法的预处理和处理阶段,这两种算法旨在丰富小样本情况下的表示:最近特征线(NFL)算法和校正最近特征线段(RNFLS)算法。结果显示,使用复杂度为O(n4)的最昂贵算法(RNFLS),最小数据集的加速率高达18.17倍,最大数据集的加快率高达29.91倍。本文还展示了串行和并行算法的伪代码,在后一种情况下,使用一种符号来描述并行化作为线程函数的执行方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信