Positive scalar curvature and low-degree group homology

IF 0.5 Q3 MATHEMATICS
No'e B'arcenas, Rudolf Zeidler
{"title":"Positive scalar curvature and low-degree group homology","authors":"No'e B'arcenas, Rudolf Zeidler","doi":"10.2140/akt.2018.3.565","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a discrete group. Assuming rational injectivity of the Baum-Connes assembly map, we provide new lower bounds on the rank of the positive scalar curvature bordism group and the relative group in Stolz' positive scalar curvature sequence for $\\mathrm{B} \\Gamma$. The lower bounds are formulated in terms of the part of degree up to $2$ in the group homology of $\\Gamma$ with coefficients in the $\\mathbb{C}\\Gamma$-module generated by finite order elements. Our results use and extend work of Botvinnik and Gilkey which treated the case of finite groups. Further crucial ingredients are a real counterpart to the delocalized equivariant Chern character and Matthey's work on explicitly inverting this Chern character in low homological degrees.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2017-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2018.3.565","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2018.3.565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Let $\Gamma$ be a discrete group. Assuming rational injectivity of the Baum-Connes assembly map, we provide new lower bounds on the rank of the positive scalar curvature bordism group and the relative group in Stolz' positive scalar curvature sequence for $\mathrm{B} \Gamma$. The lower bounds are formulated in terms of the part of degree up to $2$ in the group homology of $\Gamma$ with coefficients in the $\mathbb{C}\Gamma$-module generated by finite order elements. Our results use and extend work of Botvinnik and Gilkey which treated the case of finite groups. Further crucial ingredients are a real counterpart to the delocalized equivariant Chern character and Matthey's work on explicitly inverting this Chern character in low homological degrees.
正标量曲率与低次群同调
设$\ $是一个离散群。假设Baum-Connes集合映射具有有理注入性,我们给出了Stolz正标量曲率序列$\ mathm {B} \Gamma$中正标量曲率bordism群和相对群的秩下界。下界是用$\Gamma$的群同调中$\mathbb{C}\Gamma$-的系数在$\mathbb{C}\Gamma$-模中的部分的阶数表示的。我们的结果利用并推广了Botvinnik和Gilkey处理有限群的工作。进一步的关键成分是离域等变陈氏特征的真实对应物,以及Matthey在低同调度上明确反转这个陈氏特征的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信