A generic global Torelli theorem for certain Horikawa surfaces

IF 1.2 1区 数学 Q1 MATHEMATICS
G. Pearlstein, Zhenghe Zhang
{"title":"A generic global Torelli theorem for certain Horikawa surfaces","authors":"G. Pearlstein, Zhenghe Zhang","doi":"10.14231/ag-2019-007","DOIUrl":null,"url":null,"abstract":"Algebraic surfaces of general type with $q=0$, $p_g=2$ and $K^2=1$ were described by Enriques and then studied in more detail by Horikawa. In this paper we consider a $16$-dimensional family of special Horikawa surfaces which are certain bidouble covers of $\\mathbb{P}^2$. The construction is motivated by that of special Kunev surfaces which are counterexamples for infinitesimal Torelli and generic global Torelli problem. The main result of the paper is a generic global Torelli theorem for special Horikawa surfaces. To prove the theorem, we relate the periods of special Horikawa surfaces to the periods of certain lattice polarized $K3$ surfaces using eigenperiod maps and then apply a Torelli type result proved by Laza.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2019-007","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Algebraic surfaces of general type with $q=0$, $p_g=2$ and $K^2=1$ were described by Enriques and then studied in more detail by Horikawa. In this paper we consider a $16$-dimensional family of special Horikawa surfaces which are certain bidouble covers of $\mathbb{P}^2$. The construction is motivated by that of special Kunev surfaces which are counterexamples for infinitesimal Torelli and generic global Torelli problem. The main result of the paper is a generic global Torelli theorem for special Horikawa surfaces. To prove the theorem, we relate the periods of special Horikawa surfaces to the periods of certain lattice polarized $K3$ surfaces using eigenperiod maps and then apply a Torelli type result proved by Laza.
一类Horikawa曲面的一般全局Torelli定理
Enriques描述了$q=0$、$p_g=2$和$K^2=1$的一般类型代数曲面,Horikawa对其进行了更详细的研究。本文考虑一个$16$维的特殊Horikawa曲面族,它是$\mathbb{P}^2$的某些双覆盖。构造的动机是特殊的Kunev曲面,这些曲面是无穷小Torelli和一般全局Torelli问题的反例。本文的主要结果是特殊Horikawa曲面的一个广义全局Torelli定理。为了证明该定理,我们使用本征周期映射将特殊Horikawa曲面的周期与某些晶格极化$K3$曲面的周期联系起来,然后应用Laza证明的Torelli型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信