Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs

IF 0.5 Q3 MATHEMATICS
Yoong K. K., Hasni R., Lau G. C., Irfan M.
{"title":"Edge Irregular Reflexive Labeling for Some Classes of Plane Graphs","authors":"Yoong K. K., Hasni R., Lau G. C., Irfan M.","doi":"10.47836/mjms.16.1.03","DOIUrl":null,"url":null,"abstract":"For a graph G, we define a total k-labeling ϕ as a combination of an edge labeling ϕe(x) →\n{1, 2, . . . , ke} and a vertex labeling ϕv(x) → {0, 2, . . . , 2kv}, such that ϕ(x) = ϕv(x) if x ∈\nV (G) and ϕ(x) = ϕe(x) if x ∈ E(G), where k = max {ke, 2kv}. The total k-labeling ϕ is called\nan edge irregular reflexive k-labeling of G, if for every two edges xy, x0y0of G, one has wt(xy) 6=wt(x0y0), where wt(xy) = ϕv(x) + ϕe(xy) + ϕv(y). The smallest value of k for which such labeling exists is called a reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling on plane graphs and determine its reflexive edge strength.","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G, we define a total k-labeling ϕ as a combination of an edge labeling ϕe(x) → {1, 2, . . . , ke} and a vertex labeling ϕv(x) → {0, 2, . . . , 2kv}, such that ϕ(x) = ϕv(x) if x ∈ V (G) and ϕ(x) = ϕe(x) if x ∈ E(G), where k = max {ke, 2kv}. The total k-labeling ϕ is called an edge irregular reflexive k-labeling of G, if for every two edges xy, x0y0of G, one has wt(xy) 6=wt(x0y0), where wt(xy) = ϕv(x) + ϕe(xy) + ϕv(y). The smallest value of k for which such labeling exists is called a reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling on plane graphs and determine its reflexive edge strength.
几类平面图的边不规则自反标记
对于图G,我们定义了一个总的k标记φ作为边缘标记的组合:ϕe(x)→{1,2,…。, ke}和一个顶点标记;;;;;, 2kv},使得如果x∈V (G),则ϕ(x) = ϕ V (x);如果x∈E(G),则ϕ(x) = ϕ E(x),其中k = max {ke, 2kv}。总k标记φ称为G的边不规则自反k标记,如果对于G的每两条边xy, x0y0,有wt(xy) 6=wt(x0y0),其中wt(xy) = ϕ (x) + ϕ (y) + ϕ (y)。存在这种标记的k的最小值称为g的自反边强度。本文研究了平面图上的边不规则自反标记,并确定了它的自反边强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信