S. S. Palabiyik-Yucelik, Simone Moser, K. Becker, Z. Halıcı, Y. Bayir, Marlies Stonig, H. Schennach, D. Fuchs, J. Gostner, K. Kurz
{"title":"Oxyresveratrol modulates the immune response in vitro","authors":"S. S. Palabiyik-Yucelik, Simone Moser, K. Becker, Z. Halıcı, Y. Bayir, Marlies Stonig, H. Schennach, D. Fuchs, J. Gostner, K. Kurz","doi":"10.1515/pteridines-2020-0029","DOIUrl":null,"url":null,"abstract":"Abstract The naturally occurring stilbenoid oxyresveratrol was shown to influence inflammatory and metabolic processes. During cellular immune activation, tryptophan breakdown and neopterin formation via the enzymes indoleamine 2,3-dioxygenase-1 (IDO-1) and GTP-cyclohydrolase, respectively, are induced. Neopterin and the kynurenine to tryptophan ratio are reliable and pertinent biomarkers of Th1-type immune response and are also used in vitro to monitor effects of active plant ingredients on peripheral blood mononuclear cells (PBMCs). We investigated the effects of oxyresveratrol on the activity of the above-mentioned pathways in mitogen-stimulated human PBMC and in the myelomonocytic cell line THP-1. Oxyresveratrol exerted suppressive effects on tryptophan breakdown in both stimulated cell models. Of note, in PBMC, tryptophan breakdown was induced at lower concentrations (5–20 µM) and suppressed at higher treatment concentrations only. Neopterin formation was decreased dose-dependently in stimulated PBMC. In unstimulated PBMC similar, albeit lesser effects were observed. Data indicate that oxyresveratrol exerts distinct and concentration-dependent effects on different immune cell types. IDO-1 is targeted by oxyresveratrol and its activity can be modulated in both directions. Detailed investigations of the interactions would be interesting to fully explore the activity of this phytocompound.","PeriodicalId":20792,"journal":{"name":"Pteridines","volume":"32 1","pages":"70 - 78"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pteridines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/pteridines-2020-0029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The naturally occurring stilbenoid oxyresveratrol was shown to influence inflammatory and metabolic processes. During cellular immune activation, tryptophan breakdown and neopterin formation via the enzymes indoleamine 2,3-dioxygenase-1 (IDO-1) and GTP-cyclohydrolase, respectively, are induced. Neopterin and the kynurenine to tryptophan ratio are reliable and pertinent biomarkers of Th1-type immune response and are also used in vitro to monitor effects of active plant ingredients on peripheral blood mononuclear cells (PBMCs). We investigated the effects of oxyresveratrol on the activity of the above-mentioned pathways in mitogen-stimulated human PBMC and in the myelomonocytic cell line THP-1. Oxyresveratrol exerted suppressive effects on tryptophan breakdown in both stimulated cell models. Of note, in PBMC, tryptophan breakdown was induced at lower concentrations (5–20 µM) and suppressed at higher treatment concentrations only. Neopterin formation was decreased dose-dependently in stimulated PBMC. In unstimulated PBMC similar, albeit lesser effects were observed. Data indicate that oxyresveratrol exerts distinct and concentration-dependent effects on different immune cell types. IDO-1 is targeted by oxyresveratrol and its activity can be modulated in both directions. Detailed investigations of the interactions would be interesting to fully explore the activity of this phytocompound.
期刊介绍:
Pteridines is an open acess international quarterly journal dealing with all aspects of pteridine research. Pteridines are heterocyclic fused ring compounds involved in a wide range of biological functions from the color on butterfly wings to cofactors in enzyme catalysis to essential vitamins. Of the pteridines, 5,6,7,8-tetrahydrobiopterin is the necessary cofactor of several aromatic amino acid monoxygenases, the nitric oxide synthases and glyceryl ether monoxygenase (GEMO). Neopterin plays an essential role in the immune system and is an important biomarker in laboratory medicine for diseases such as HIV, cardiovascular disease, malignant tumors, among others.
Topics:
-Neopterin, dihydroneopterin, monapterin-
Biopterin, tetrahydrobiopterin-
Folates, antifolates, riboflavin-
Phenylalanine, tyrosine, phenylketonuria, serotonin, adrenalin, noradrenalin, L-DOPA, dopamine, related biogenic amines-
Phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase, nitric oxide synthases (iNOS), alkylglycerol monooxygenase (AGMO), dihydropterin reductase, sepiapterin reductase-
Homocysteine, mediators of inflammation, redox systems, iron.