Advancing real-time hybrid simulation for coupled nonlinear soil-isolator-structure system

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL
Hongwei Li, A. Maghareh, Johnny Condori Uribe, H. Montoya, S. Dyke, Zhao-dong Xu
{"title":"Advancing real-time hybrid simulation for coupled nonlinear soil-isolator-structure system","authors":"Hongwei Li, A. Maghareh, Johnny Condori Uribe, H. Montoya, S. Dyke, Zhao-dong Xu","doi":"10.12989/SSS.2021.28.1.105","DOIUrl":null,"url":null,"abstract":"Experiments involving soil-structure interaction are often constrained by the capacity and other limitations of the shake table. Additionally, it is usually necessary to consider different types of soil in experiments. Real-time hybrid simulation (RTHS) offers an alternative method to conduct such tests. RTHS is a cyber-physical testing technique that splits the dynamic system under investigation into numerical and physical components, and then realistically couples those components in a single test. A limited number of previous studies involving soil-structure interaction have been conducted using RTHS, with a focus on linear models and systems. The presence of isolators was not considered in these studies to the authors","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.28.1.105","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

Experiments involving soil-structure interaction are often constrained by the capacity and other limitations of the shake table. Additionally, it is usually necessary to consider different types of soil in experiments. Real-time hybrid simulation (RTHS) offers an alternative method to conduct such tests. RTHS is a cyber-physical testing technique that splits the dynamic system under investigation into numerical and physical components, and then realistically couples those components in a single test. A limited number of previous studies involving soil-structure interaction have been conducted using RTHS, with a focus on linear models and systems. The presence of isolators was not considered in these studies to the authors
推进非线性隔土-结构耦合系统的实时混合仿真
涉及土壤-结构相互作用的实验通常受到振动台的容量和其他限制的约束。此外,在实验中通常有必要考虑不同类型的土壤。实时混合仿真(RTHS)提供了一种进行此类测试的替代方法。RTHS是一种网络物理测试技术,它将正在研究的动态系统拆分为数字和物理组件,然后在单个测试中真实地耦合这些组件。以前使用RTHS进行的涉及土壤-结构相互作用的研究数量有限,重点是线性模型和系统。作者在这些研究中没有考虑隔离器的存在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信