Three-dimensional CFD-solid mechanics analysis of the hydrogen internal combustion engine piston subjected to thermomechanical loads

IF 2.4 Q3 ENERGY & FUELS
M. Al-Baghdadi, S. Ahmed, N. Ghyadh
{"title":"Three-dimensional CFD-solid mechanics analysis of the hydrogen internal combustion engine piston subjected to thermomechanical loads","authors":"M. Al-Baghdadi, S. Ahmed, N. Ghyadh","doi":"10.14710/ijred.2023.52496","DOIUrl":null,"url":null,"abstract":"Fueling internal combustion engines with hydrogen is one of the most recommended alternative fuels today in order to combat the energy crisis, pollution problems, and climate change. Despite all the advantages of hydrogen fuel, it produces a higher combustion temperature than gasoline. In an internal combustion engine, the piston is among the numerous complex and highly loaded components. Piston surfaces are directly affected by combustion flames, making them critical components of engines. To examine the stress distribution and specify the critical fracture zones in the piston for hydrogen fuel engines, a three-dimensional CFD-solid-mechanics model of the internal combustion engine piston subjected to real thermomechanical loads was analyzed numerically to investigate the distribution of the temperature on the piston body, the interrelated thermomechanical deformations map, and the pattern of the stresses when fueling the engine with hydrogen fuel. With the aid of multiphysics COMSOL software, the CFD-solid-mechanics equations were solved with high accuracy. Despite the increase in pressure on the piston and its temperature when the engine is running on hydrogen fuel, the results show that the hydrogen fuel engine piston can withstand, safely, the thermomechanical loads. In comparison to gasoline fuel, hydrogen fuel caused a deformation of 0.34 mm, an increase of 17%. This deformation is within safe limits, with an average clearance of 0.867 mm between the cylinder liner and piston.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.52496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Fueling internal combustion engines with hydrogen is one of the most recommended alternative fuels today in order to combat the energy crisis, pollution problems, and climate change. Despite all the advantages of hydrogen fuel, it produces a higher combustion temperature than gasoline. In an internal combustion engine, the piston is among the numerous complex and highly loaded components. Piston surfaces are directly affected by combustion flames, making them critical components of engines. To examine the stress distribution and specify the critical fracture zones in the piston for hydrogen fuel engines, a three-dimensional CFD-solid-mechanics model of the internal combustion engine piston subjected to real thermomechanical loads was analyzed numerically to investigate the distribution of the temperature on the piston body, the interrelated thermomechanical deformations map, and the pattern of the stresses when fueling the engine with hydrogen fuel. With the aid of multiphysics COMSOL software, the CFD-solid-mechanics equations were solved with high accuracy. Despite the increase in pressure on the piston and its temperature when the engine is running on hydrogen fuel, the results show that the hydrogen fuel engine piston can withstand, safely, the thermomechanical loads. In comparison to gasoline fuel, hydrogen fuel caused a deformation of 0.34 mm, an increase of 17%. This deformation is within safe limits, with an average clearance of 0.867 mm between the cylinder liner and piston.
氢内燃机活塞在热机械载荷作用下的三维CFD固体力学分析
为内燃机提供氢燃料是当今最受推荐的替代燃料之一,以应对能源危机、污染问题和气候变化。尽管氢燃料有很多优点,但它的燃烧温度比汽油高。在内燃机中,活塞是众多复杂和高负荷部件之一。活塞表面直接受到燃烧火焰的影响,使其成为发动机的关键部件。为了研究氢燃料发动机活塞内部的应力分布,明确其临界断裂区域,建立了内燃机活塞在实际热力载荷作用下的三维cfd -固体力学模型,对其进行了数值分析,研究了活塞体上的温度分布、相关的热力变形图以及加氢时的应力分布规律。借助多物理场COMSOL软件,对cfd -固体力学方程进行了高精度求解。实验结果表明,在使用氢燃料时,活塞承受的压力和温度都有所增加,但氢燃料发动机活塞能够安全承受热机械载荷。与汽油燃料相比,氢燃料引起的变形量为0.34 mm,增加了17%。这种变形在安全范围内,缸套和活塞之间的平均间隙为0.867毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信