POSITIONAL IMPULSE AND DISCONTINUOUS CONTROLS FOR DIFFERENTIAL INCLUSION

Q3 Mathematics
I. Finogenko, A. Sesekin
{"title":"POSITIONAL IMPULSE AND DISCONTINUOUS CONTROLS FOR DIFFERENTIAL INCLUSION","authors":"I. Finogenko, A. Sesekin","doi":"10.15826/umj.2020.2.007","DOIUrl":null,"url":null,"abstract":"Nonlinear control systems presented in the form of differential inclusions with impulse or discontinuous positional controls are investigated. The formalization of the impulse-sliding regime is carried out. In terms of the jump function of the impulse control, the differential inclusion is written for the ideal impulse-sliding regime. The method of equivalent control for differential inclusion with discontinuous positional controls is used to solve the question of the existence of a discontinuous system for which the ideal impulse-sliding regime is the usual sliding regime. The possibility of the combined use of the impulse-sliding and sliding regimes as control actions in those situations when there are not enough control resources for the latter is discussed.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2020.2.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Nonlinear control systems presented in the form of differential inclusions with impulse or discontinuous positional controls are investigated. The formalization of the impulse-sliding regime is carried out. In terms of the jump function of the impulse control, the differential inclusion is written for the ideal impulse-sliding regime. The method of equivalent control for differential inclusion with discontinuous positional controls is used to solve the question of the existence of a discontinuous system for which the ideal impulse-sliding regime is the usual sliding regime. The possibility of the combined use of the impulse-sliding and sliding regimes as control actions in those situations when there are not enough control resources for the latter is discussed.
微分夹杂的位置脉冲与间断控制
研究了具有脉冲或不连续位置控制的微分夹杂形式的非线性控制系统。对脉冲滑动状态进行了形式化分析。根据脉冲控制的跳变函数,写出了理想脉冲滑动状态下的微分包含。用微分包含的等效控制方法和不连续位置控制方法,解决了以理想脉冲滑动状态为通常滑动状态的不连续系统的存在性问题。在没有足够的控制资源的情况下,讨论了将脉冲滑动和滑动联合使用作为控制行为的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信