Asymptotic behavior of solutions of Volterra integro-differential equations with and without retardation

IF 0.9 4区 数学 Q2 MATHEMATICS
J. Graef, O. Tunç
{"title":"Asymptotic behavior of solutions of Volterra integro-differential equations with and without retardation","authors":"J. Graef, O. Tunç","doi":"10.1216/jie.2021.33.289","DOIUrl":null,"url":null,"abstract":"Asymptotic stability, uniform stability, integrability, and boundedness of solutions of Volterra integro-differential equations with and without constant retardation are investigated using a new type of Lyapunov-Krasovskii functionals. An advantage of the new functionals used here is that they eliminate using Gronwall’s inequality. Compared to related results in the literature, the conditions here are more general, simple, and convenient to apply. Examples to show the application of the theorems are included.","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jie.2021.33.289","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Asymptotic stability, uniform stability, integrability, and boundedness of solutions of Volterra integro-differential equations with and without constant retardation are investigated using a new type of Lyapunov-Krasovskii functionals. An advantage of the new functionals used here is that they eliminate using Gronwall’s inequality. Compared to related results in the literature, the conditions here are more general, simple, and convenient to apply. Examples to show the application of the theorems are included.
有滞后和无滞后Volterra积分微分方程解的渐近性质
利用一类新的Lyapunov-Krasovskii泛函,研究了具有和不具有常滞差的Volterra积分微分方程解的渐近稳定性、一致稳定性、可积性和有界性。这里使用的新函数的一个优点是它们消除了使用Gronwall不等式。与文献的相关结果相比,这里的条件更一般、简单、便于应用。给出了一些例子来说明这些定理的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integral Equations and Applications
Journal of Integral Equations and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications. The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field. The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信