Default functions and Liouville type theorems based on symmetric diffusions

Pub Date : 2020-12-01 DOI:10.2969/jmsj/82398239
A. Atsuji
{"title":"Default functions and Liouville type theorems based on symmetric diffusions","authors":"A. Atsuji","doi":"10.2969/jmsj/82398239","DOIUrl":null,"url":null,"abstract":"Default functions appear when one discusses conditions which ensure that a local martingale is a true martingale. We show vanishing of default functions of Dirichlet processes enables us to obtain Liouville type theorems for subharmonic functions and holomorphic maps. Default functions were introduced in [7] and it is known that vanishing of the default function of a local martingale implies that it is a true martingale. Positivity of the default function then indicates the singularity of local martingale. Such local martingales are called strictly local martingales. Recently strictly local martingales are playing important roles in the theory of financial bubbles (cf. [19]), so the notion of default function becomes important in mathematical finance area. We consider them in a different context. In mathematical analysis of subharmonic functions it is classical and natural to consider the functions along Brownian motions. A stochastic process derived from a subharmonic function composed with Brownian motion is a local submartingale. Then if we know that the process is a true submartingale, which follows from vanishing of the default function of the submartingale, it effects simpleness and clearness in analysis of subharmonic functions. In this paper we intend to show that this probabilistic notion plays effective roles in some analysis such as L-Liouville type theorems of subharmonic functions and Liouville type theorems for functions satisfying some nonlinear differential inequalities. It covers and extends the precedent results about L-Liouville theorem for subharmonic functions 2000 Mathematics Subject Classification. Primary 31C05; Secondary 58J65.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/82398239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Default functions appear when one discusses conditions which ensure that a local martingale is a true martingale. We show vanishing of default functions of Dirichlet processes enables us to obtain Liouville type theorems for subharmonic functions and holomorphic maps. Default functions were introduced in [7] and it is known that vanishing of the default function of a local martingale implies that it is a true martingale. Positivity of the default function then indicates the singularity of local martingale. Such local martingales are called strictly local martingales. Recently strictly local martingales are playing important roles in the theory of financial bubbles (cf. [19]), so the notion of default function becomes important in mathematical finance area. We consider them in a different context. In mathematical analysis of subharmonic functions it is classical and natural to consider the functions along Brownian motions. A stochastic process derived from a subharmonic function composed with Brownian motion is a local submartingale. Then if we know that the process is a true submartingale, which follows from vanishing of the default function of the submartingale, it effects simpleness and clearness in analysis of subharmonic functions. In this paper we intend to show that this probabilistic notion plays effective roles in some analysis such as L-Liouville type theorems of subharmonic functions and Liouville type theorems for functions satisfying some nonlinear differential inequalities. It covers and extends the precedent results about L-Liouville theorem for subharmonic functions 2000 Mathematics Subject Classification. Primary 31C05; Secondary 58J65.
分享
查看原文
基于对称扩散的默认函数和Liouville型定理
当讨论确保局部鞅是真鞅的条件时,就会出现默认函数。我们证明了Dirichlet过程的默认函数的消失使我们能够获得亚调和函数和全纯映射的Liouville型定理。在[7]中引入了缺省函数,并且已知局部鞅的缺省函数的消失意味着它是真鞅。默认函数的正性则表示局部鞅的奇异性。这样的局部鞅被称为严格的局部鞅。最近,严格局部鞅在金融泡沫理论中发挥着重要作用(参见[19]),因此违约函数的概念在数学金融领域变得很重要。我们在不同的背景下看待它们。在次调和函数的数学分析中,沿着布朗运动考虑函数是经典的和自然的。由布朗运动组成的次调和函数导出的随机过程是局部次鞅。然后,如果我们知道这个过程是一个真正的子映射,它是从子映射的默认函数的消失开始的,它会影响子调和函数分析的简单性和清晰性。在本文中,我们试图证明这个概率概念在一些分析中起着有效的作用,例如次调和函数的L-Liouville型定理和满足一些非线性微分不等式的函数的Liouville类型定理。它涵盖并扩展了关于次调和函数L-Liouville定理的先前结果2000数学学科分类。初级31C05;中学58J65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信