Support Vector Machine based proactive fault-tolerant scheduling for Grid Computing Environment

Q3 Engineering
A. Ebenezer, E. Rajsingh, B. Kaliaperumal
{"title":"Support Vector Machine based proactive fault-tolerant scheduling for Grid Computing Environment","authors":"A. Ebenezer, E. Rajsingh, B. Kaliaperumal","doi":"10.1504/IJAIP.2020.10017213","DOIUrl":null,"url":null,"abstract":"To classify the reliable resources accurately and perform a proactive fault tolerant scheduling in grid computing environment, a combination of support vector machine (SVM) with the quantum-behaved particle swarm optimization using Gaussian distributed local attractor point (GAQPSO) is proposed in this paper. When tuned with appropriate kernel parameters, the SVM classifier provides high accuracy in reliable resource prediction. The higher diversity of GAQPSO compared to other variants of QPSO, reduces the makespan of the schedule significantly. The performance of the SVM-GAQPSO scheduler is analysed in terms of the makespan, reliability, and accuracy. The empirical result shows that the reliability of the SVM-GAQPSO scheduler is 14% higher than the average reliability of the compared algorithms. Also, the accuracy of prediction using the SVM classifier is 92.55% and it is 37.2% high compared to classification and regression trees (CART), linear discriminant analysis (LDA), K-nearest neighbourhood (K-NN), and random forest (RF) algorithm.","PeriodicalId":38797,"journal":{"name":"International Journal of Advanced Intelligence Paradigms","volume":"16 1","pages":"381-403"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Intelligence Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAIP.2020.10017213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

To classify the reliable resources accurately and perform a proactive fault tolerant scheduling in grid computing environment, a combination of support vector machine (SVM) with the quantum-behaved particle swarm optimization using Gaussian distributed local attractor point (GAQPSO) is proposed in this paper. When tuned with appropriate kernel parameters, the SVM classifier provides high accuracy in reliable resource prediction. The higher diversity of GAQPSO compared to other variants of QPSO, reduces the makespan of the schedule significantly. The performance of the SVM-GAQPSO scheduler is analysed in terms of the makespan, reliability, and accuracy. The empirical result shows that the reliability of the SVM-GAQPSO scheduler is 14% higher than the average reliability of the compared algorithms. Also, the accuracy of prediction using the SVM classifier is 92.55% and it is 37.2% high compared to classification and regression trees (CART), linear discriminant analysis (LDA), K-nearest neighbourhood (K-NN), and random forest (RF) algorithm.
网格计算环境下基于支持向量机的主动容错调度
为了在网格计算环境中准确地对可靠资源进行分类并执行主动容错调度,本文提出了一种将支持向量机(SVM)与基于高斯分布局部吸引点(GAQPSO)的量子行为粒子群优化相结合的方法。当使用适当的核参数进行调整时,SVM分类器在可靠的资源预测中提供了高精度。与QPSO的其他变体相比,GAQPSO的多样性更高,显著缩短了时间表的完成时间。从时间跨度、可靠性和准确性等方面分析了SVM-GAQPSO调度器的性能。实验结果表明,SVM-GAQPSO调度器的可靠性比比较算法的平均可靠性高14%。此外,与分类和回归树(CART)、线性判别分析(LDA)、K-最近邻域(K-NN)和随机森林(RF)算法相比,使用SVM分类器的预测准确率为92.55%,高37.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信