Peeling for tensorial wave equations on Schwarzschild spacetime

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Truong Xuan Pham
{"title":"Peeling for tensorial wave equations on Schwarzschild spacetime","authors":"Truong Xuan Pham","doi":"10.1142/S0129055X2350023X","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the asymptotic behaviour along outgoing and incoming radial geodesics, i.e., the peeling property for the tensorial Fackrell-Ipser and spin $\\pm 1$ Teukolsky equations on Schwarzschild spacetime. Our method combines a conformal compactification with vector field techniques to prove the two-side estimates of the energies of tensorial fields through the future and past null infinity $\\mathscr{I}^\\pm$ and the initial Cauchy hypersurface $\\Sigma_0 = \\left\\{ t=0 \\right\\}$ in a neighbourhood of spacelike infinity $i_0$ far away from the horizon and future timelike infinity. Our results obtain the optimal initial data which guarantees the peeling at all orders.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X2350023X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the asymptotic behaviour along outgoing and incoming radial geodesics, i.e., the peeling property for the tensorial Fackrell-Ipser and spin $\pm 1$ Teukolsky equations on Schwarzschild spacetime. Our method combines a conformal compactification with vector field techniques to prove the two-side estimates of the energies of tensorial fields through the future and past null infinity $\mathscr{I}^\pm$ and the initial Cauchy hypersurface $\Sigma_0 = \left\{ t=0 \right\}$ in a neighbourhood of spacelike infinity $i_0$ far away from the horizon and future timelike infinity. Our results obtain the optimal initial data which guarantees the peeling at all orders.
Schwarzschild时空上张量波动方程的Peeling
在本文中,我们建立了沿出射和入射径向测地线的渐近行为,即Schwarzschild时空上张量Fackrell-Ipser和自旋$\pm1$Teukolsky方程的剥离性质。我们的方法将保角紧致化与向量场技术相结合,证明了通过未来和过去零无穷大$\mathscr{I}^\pm$以及在远离地平线的类空无穷大$I_0$邻域和未来类时间无穷大中的初始Cauchy超曲面$\ Sigma_0=\left\{t=0\right\}$的张量场能量的两侧估计。我们的结果获得了保证所有订单剥离的最佳初始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信