{"title":"Fruit Classification Utilizing a Robotic Gripper with Integrated Sensors and Adaptive Grasping","authors":"Jintao Zhang, Shuang Lai, Huahua Yu, Erjie Wang, Xizhe Wang, Zixuan Zhu","doi":"10.1155/2021/7157763","DOIUrl":null,"url":null,"abstract":"As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2021/7157763","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9
Abstract
As the core component of agricultural robots, robotic grippers are widely used for plucking, picking, and harvesting fruits and vegetables. Secure grasping is a severe challenge in agricultural applications because of the variation in the shape and hardness of agricultural products during maturation, as well as their variety and delicacy. In this study, a fruit identification method utilizing an adaptive gripper with tactile sensing and machine learning algorithms is reported. An adaptive robotic gripper is designed and manufactured to perform adaptive grasping. A tactile sensing information acquisition circuit is built, and force and bending sensors are integrated into the robotic gripper to measure the contact force distribution on the contact surface and the deformation of the soft fingers. A robotic manipulator platform is developed to collect the tactile sensing data in the grasping process. The performance of the random forest (RF), k-nearest neighbor (KNN), support vector classification (SVC), naive Bayes (NB), linear discriminant analysis (LDA), and ridge regression (RR) classifiers in identifying and classifying five types of fruits using the adaptive gripper is evaluated and compared. The RF classifier achieves the highest accuracy of 98%, while the accuracies of the other classifiers vary from 74% to 97%. The experiment illustrates that efficient and accurate fruit identification can be realized with the adaptive gripper and machine learning classifiers, and that the proposed method can provide a reference for controlling the grasping force and planning the robotic motion in the plucking, picking, and harvesting of fruits and vegetables.
期刊介绍:
Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.