{"title":"Sharp gradient stability for the Sobolev inequality","authors":"A. Figalli, Y. Zhang","doi":"10.1215/00127094-2022-0051","DOIUrl":null,"url":null,"abstract":"Motivated by important applications to problems in the calculus of variations and evolution PDEs, in recent years there has been a growing interest around the understanding of quantitative stability for functional/geometric inequalities, see for instance [3, 2, 8, 27, 28, 21, 9, 22, 29, 18, 10, 6, 7, 11, 13, 19, 23, 35, 26, 5, 14, 16, 17, 20, 25, 30, 31, 24, 33, 34], as well as the survey papers [15, 26, 17]. Following this line of research, in this paper we shall investigate the stability of minimizers to the classical Sobolev inequality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 39
Abstract
Motivated by important applications to problems in the calculus of variations and evolution PDEs, in recent years there has been a growing interest around the understanding of quantitative stability for functional/geometric inequalities, see for instance [3, 2, 8, 27, 28, 21, 9, 22, 29, 18, 10, 6, 7, 11, 13, 19, 23, 35, 26, 5, 14, 16, 17, 20, 25, 30, 31, 24, 33, 34], as well as the survey papers [15, 26, 17]. Following this line of research, in this paper we shall investigate the stability of minimizers to the classical Sobolev inequality.