{"title":"Separation of Crocin/Betanin Using Aqueous Two-phase Systems Containing Ionic Liquid and Sorbitol","authors":"Roozbeh Madadi, Shahla Shahriari, H. Mozafari","doi":"10.15255/cabeq.2021.2038","DOIUrl":null,"url":null,"abstract":"Betanin and crocin, two food additives with attractive colors, are bioactive compounds of plants that are widely used in food, pharmaceutical, and medical industries. These bioactive pigments are sensitive to light, heat, organic solvents, and pH. It seems that a benign economic method is needed to extract these biomolecules, especially for industrial applications. The aqueous two-phase system (ATPS) is a liquid-liquid extraction technique that has shown its potential in recent years to extract and separate biomolecules. In this study, an ATPS consisting of carbohydrate (sorbitol) and ionic liquid (tetrabutyl phosphonium bromide) has been proposed as a new separation system with unique properties to study the partition coefficient of crocin and betanin. The results indicated that crocin and betanin had more tendency to the ionic liquid (IL)-rich phase and carbohydrate-rich phase, respectively. The influence of the concentration of IL and sorbitol on the partition coefficient was studied. The results showed that an increase in the tie-line length (concentrations) increased the partition coefficient of crocin and betanin. Enhancement in temperature increased the partition coefficient of crocin. The highest values of crocin recovery (97.55 %) and partition coefficient (39.85) at 308 K show that our proposed ATPS can be considered for crocin one step.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2021.2038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Betanin and crocin, two food additives with attractive colors, are bioactive compounds of plants that are widely used in food, pharmaceutical, and medical industries. These bioactive pigments are sensitive to light, heat, organic solvents, and pH. It seems that a benign economic method is needed to extract these biomolecules, especially for industrial applications. The aqueous two-phase system (ATPS) is a liquid-liquid extraction technique that has shown its potential in recent years to extract and separate biomolecules. In this study, an ATPS consisting of carbohydrate (sorbitol) and ionic liquid (tetrabutyl phosphonium bromide) has been proposed as a new separation system with unique properties to study the partition coefficient of crocin and betanin. The results indicated that crocin and betanin had more tendency to the ionic liquid (IL)-rich phase and carbohydrate-rich phase, respectively. The influence of the concentration of IL and sorbitol on the partition coefficient was studied. The results showed that an increase in the tie-line length (concentrations) increased the partition coefficient of crocin and betanin. Enhancement in temperature increased the partition coefficient of crocin. The highest values of crocin recovery (97.55 %) and partition coefficient (39.85) at 308 K show that our proposed ATPS can be considered for crocin one step.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.