{"title":"On joint properties of vertices with a given degree or label in the random recursive tree","authors":"B. Lodewijks","doi":"10.1214/22-ejp877","DOIUrl":null,"url":null,"abstract":"In this paper, we study the joint behaviour of the degree, depth and label of and graph distance between high-degree vertices in the random recursive tree. We generalise the results obtained by Eslava and extend these to include the labels of and graph distance between high-degree vertices. The analysis of both these two properties of high-degree vertices is novel, in particular in relation to the behaviour of the depth of such vertices. In passing, we also obtain results for the joint behaviour of the degree and depth of and graph distance between any fixed number of vertices with a prescribed label. This combines several isolated results on the degree and depth of and graph distance between vertices with a prescribed label already present in the literature. Furthermore, we extend these results to hold jointly for any number of fixed vertices and improve these results by providing more detailed descriptions of the distributional limits. Our analysis is based on a correspondence between the random recursive tree and a representation of the Kingman $n$-coalescent.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp877","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we study the joint behaviour of the degree, depth and label of and graph distance between high-degree vertices in the random recursive tree. We generalise the results obtained by Eslava and extend these to include the labels of and graph distance between high-degree vertices. The analysis of both these two properties of high-degree vertices is novel, in particular in relation to the behaviour of the depth of such vertices. In passing, we also obtain results for the joint behaviour of the degree and depth of and graph distance between any fixed number of vertices with a prescribed label. This combines several isolated results on the degree and depth of and graph distance between vertices with a prescribed label already present in the literature. Furthermore, we extend these results to hold jointly for any number of fixed vertices and improve these results by providing more detailed descriptions of the distributional limits. Our analysis is based on a correspondence between the random recursive tree and a representation of the Kingman $n$-coalescent.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.