F. Brown, S. Burge, K. Hristovski, R. Burge, Evan Taylor, D. Hoffman
{"title":"Microbial potentiometric sensor technology for real-time detecting and monitoring of toxic metals in aquatic matrices","authors":"F. Brown, S. Burge, K. Hristovski, R. Burge, Evan Taylor, D. Hoffman","doi":"10.20450/mjcce.2020.2088","DOIUrl":null,"url":null,"abstract":"Considering that toxic metals can affect metabolic processes in microorganisms adversely, it can be hypothesized that these metals in water matrices would induce a decrease in metabolic activity of the biofilm microorganisms populating the surface of a sensing electrode, which could be registered as a change in the open-circuit potential (OCP) generated by the biofilm microorganisms. The goal of this study was to test this hypothesis and demonstrate the underlying principle that microbial potentiometric sensor (MPS) technology could be used for long-term and real-time monitoring and detection of rapid changes in metal concentrations in realistic aquatic environments. To address the goal, four objective were addressed: (1) a batch reactor with three graphite-based MPS electrodes was fabricated; (2) a set of single-ion solutions and one multiple ion solution were prepared reflecting realistic concentrations of metals found in electroplating wastewaters; (3) the responses of the MPS to the simultaneous presence of multiple toxic metal ions in a single solution were measured; and (4) the changes of the MPS signals to the presence of individual metal ion solutions were examined. While the hypothesis was validated, the study also revealed that the MPS was sufficiently sensitive to not only detect, but also quantify, toxic metal ion concentrations in aqueous solutions. The coefficients of determination, which were R 2 >0.995, and responsiveness of Cd>Pb>Ag>Ni> Zn. The study provides valuable information for enforcement agents, environmental professionals, and wastewater treatment operators, so toxic metal pollution and its detrimental impacts can be prevented and mitigated.","PeriodicalId":18088,"journal":{"name":"Macedonian Journal of Chemistry and Chemical Engineering","volume":"39 1","pages":"119-127"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macedonian Journal of Chemistry and Chemical Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2020.2088","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Considering that toxic metals can affect metabolic processes in microorganisms adversely, it can be hypothesized that these metals in water matrices would induce a decrease in metabolic activity of the biofilm microorganisms populating the surface of a sensing electrode, which could be registered as a change in the open-circuit potential (OCP) generated by the biofilm microorganisms. The goal of this study was to test this hypothesis and demonstrate the underlying principle that microbial potentiometric sensor (MPS) technology could be used for long-term and real-time monitoring and detection of rapid changes in metal concentrations in realistic aquatic environments. To address the goal, four objective were addressed: (1) a batch reactor with three graphite-based MPS electrodes was fabricated; (2) a set of single-ion solutions and one multiple ion solution were prepared reflecting realistic concentrations of metals found in electroplating wastewaters; (3) the responses of the MPS to the simultaneous presence of multiple toxic metal ions in a single solution were measured; and (4) the changes of the MPS signals to the presence of individual metal ion solutions were examined. While the hypothesis was validated, the study also revealed that the MPS was sufficiently sensitive to not only detect, but also quantify, toxic metal ion concentrations in aqueous solutions. The coefficients of determination, which were R 2 >0.995, and responsiveness of Cd>Pb>Ag>Ni> Zn. The study provides valuable information for enforcement agents, environmental professionals, and wastewater treatment operators, so toxic metal pollution and its detrimental impacts can be prevented and mitigated.
期刊介绍:
Macedonian Journal of Chemistry and Chemical Engineering (Maced. J. Chem. Chem. Eng.) is an official publication of the Society of Chemists and Technologists of Macedonia. It is a not-for-profit open acess journal published twice a year. The journal publishes original scientific papers, short communications, reviews and educational papers from all fields of chemistry, chemical engineering, food technology, biotechnology and material sciences, metallurgy and related fields. The papers published in the Journal are summarized in Chemical Abstracts.