Controlled Crystallinity of TiO2 Layers Grown by Atmospheric Pressure Spatial Atomic Layer Deposition and their Impact on Perovskite Solar Cell Efficiency
Eugen Zimmermann, K. Wong, T. Seewald, J. Kalb, J. Steffens, G. Hahn, L. Schmidt‐Mende
{"title":"Controlled Crystallinity of TiO2 Layers Grown by Atmospheric Pressure Spatial Atomic Layer Deposition and their Impact on Perovskite Solar Cell Efficiency","authors":"Eugen Zimmermann, K. Wong, T. Seewald, J. Kalb, J. Steffens, G. Hahn, L. Schmidt‐Mende","doi":"10.1155/2022/1172871","DOIUrl":null,"url":null,"abstract":"Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD) is an upcoming deposition technique suitable for a variety of materials and combines the benefits of a regular atomic layer deposition with a significantly increased deposition rate at ambient conditions. In this work, amorphous and anatase TiO2 layers are fabricated by AP-SALD via systematic variation of process conditions such as temperature, reactant (H2O and O3), and posttreatment. The formed layers are characterized for their structural and optoelectronic properties and utilized as a hole-blocking layer in hybrid perovskite solar cells. It is found that TiO2 layers fabricated at elevated deposition temperatures possess strong anatase character but expose an unfavorable interface to the perovskite layer, promoting recombination and lowering the shunt resistance and open circuit voltage of the solar cells. Therefore, the interface is essential for efficient charge extraction, which can be significantly improved by controlling the process parameters.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/1172871","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD) is an upcoming deposition technique suitable for a variety of materials and combines the benefits of a regular atomic layer deposition with a significantly increased deposition rate at ambient conditions. In this work, amorphous and anatase TiO2 layers are fabricated by AP-SALD via systematic variation of process conditions such as temperature, reactant (H2O and O3), and posttreatment. The formed layers are characterized for their structural and optoelectronic properties and utilized as a hole-blocking layer in hybrid perovskite solar cells. It is found that TiO2 layers fabricated at elevated deposition temperatures possess strong anatase character but expose an unfavorable interface to the perovskite layer, promoting recombination and lowering the shunt resistance and open circuit voltage of the solar cells. Therefore, the interface is essential for efficient charge extraction, which can be significantly improved by controlling the process parameters.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells