Distance (Signless) Laplacian Eigenvalues of $k$-uniform Hypergraphs

IF 0.6 4区 数学 Q3 MATHEMATICS
Xiangxiang Liu, Ligong Wang
{"title":"Distance (Signless) Laplacian Eigenvalues of $k$-uniform Hypergraphs","authors":"Xiangxiang Liu, Ligong Wang","doi":"10.11650/tjm/220604","DOIUrl":null,"url":null,"abstract":". The distance (signless) Laplacian eigenvalues of a connected hypergraph are the eigenvalues of its distance (signless) Laplacian matrix. For all n -vertex k -uniform hypertrees, we determine the k -uniform hypertree with minimum second largest distance (signless) Laplacian eigenvalue. For all n -vertex k -uniform unicyclic hypergraphs, we obtain the k -uniform unicyclic hypergraph with minimum largest distance (signless) Laplacian eigenvalue, and the k -uniform unicyclic hypergraph with minimum second largest distance Laplacian eigenvalue.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220604","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. The distance (signless) Laplacian eigenvalues of a connected hypergraph are the eigenvalues of its distance (signless) Laplacian matrix. For all n -vertex k -uniform hypertrees, we determine the k -uniform hypertree with minimum second largest distance (signless) Laplacian eigenvalue. For all n -vertex k -uniform unicyclic hypergraphs, we obtain the k -uniform unicyclic hypergraph with minimum largest distance (signless) Laplacian eigenvalue, and the k -uniform unicyclic hypergraph with minimum second largest distance Laplacian eigenvalue.
$k$-一致超图的距离(无符号)拉普拉斯特征值
。连通超图的距离(无符号)拉普拉斯特征值是其距离(无符号)拉普拉斯矩阵的特征值。对于所有n顶点k一致超树,我们确定了具有最小第二大距离(无符号)拉普拉斯特征值的k一致超树。对于所有n顶点k -一致单环超图,我们得到了具有最小最大距离(无符号)拉普拉斯特征值的k -一致超图,以及具有最小第二大距离拉普拉斯特征值的k -一致单环超图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信