Full-Information Selection Bias Correction for Discrete Choice Models with Observation-Conditional Regressors

IF 3.1 3区 经济学 Q1 ECONOMICS
Y. A. Chen, A. Haynie, Christopher M. Anderson
{"title":"Full-Information Selection Bias Correction for Discrete Choice Models with Observation-Conditional Regressors","authors":"Y. A. Chen, A. Haynie, Christopher M. Anderson","doi":"10.1086/719794","DOIUrl":null,"url":null,"abstract":"We examine self-selection in polychotomous choice models that construct attribute values for each alternative conditioned on observed choices. Using observations made only when the alternative was chosen ignores private information which was a basis for the decision, biasing resulting estimates. We suggest a full-information maximum likelihood procedure that performs well at the extremes of the choice set in our sample, and use an “identification at infinity” weighting to identify levels. We apply the model to understanding fishing location choice in the economically significant Bering Sea pollock fishery, where expected catches at each location are constructed from harvests observed when that location is chosen.","PeriodicalId":47114,"journal":{"name":"Journal of the Association of Environmental and Resource Economists","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Environmental and Resource Economists","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/719794","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

We examine self-selection in polychotomous choice models that construct attribute values for each alternative conditioned on observed choices. Using observations made only when the alternative was chosen ignores private information which was a basis for the decision, biasing resulting estimates. We suggest a full-information maximum likelihood procedure that performs well at the extremes of the choice set in our sample, and use an “identification at infinity” weighting to identify levels. We apply the model to understanding fishing location choice in the economically significant Bering Sea pollock fishery, where expected catches at each location are constructed from harvests observed when that location is chosen.
基于观测条件回归的离散选择模型的全信息选择偏差校正
我们研究了多分选择模型中的自我选择,该模型根据观察到的选择为每个选择构建属性值。仅在选择替代方案时进行观察,忽略了作为决策基础的私人信息,从而使结果估计产生偏差。我们建议使用全信息最大似然程序,该程序在样本中选择集的极端情况下表现良好,并使用“无限识别”加权来识别水平。我们将该模型应用于理解经济意义重大的白令海鳕鱼渔业的捕捞地点选择,其中每个地点的预期渔获量是根据选择该地点时观察到的渔获量构建的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信