{"title":"Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis","authors":"Hanif Heidari, H. Zwart","doi":"10.1051/mmnp/2022028","DOIUrl":null,"url":null,"abstract":"Analysis of longitudinal vibration in a nanorod is an important subject in science and engineering due to its vast application in nanotechnology. This paper introduces a port-Hamiltonian formulation for the longitudinal vibrations in a nanorod, which shows that this model is essentially hyperbolic. Furthermore, it investigates the spectral properties of the associated system operator. Standard distributed control and feedback are shown not to be controllable nor stabilizing.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Analysis of longitudinal vibration in a nanorod is an important subject in science and engineering due to its vast application in nanotechnology. This paper introduces a port-Hamiltonian formulation for the longitudinal vibrations in a nanorod, which shows that this model is essentially hyperbolic. Furthermore, it investigates the spectral properties of the associated system operator. Standard distributed control and feedback are shown not to be controllable nor stabilizing.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.