{"title":"The metric completion of the space of vector-valued one-forms","authors":"Nicola Cavallucci, Zhe Su","doi":"10.1007/s10455-023-09916-x","DOIUrl":null,"url":null,"abstract":"<div><p>The space of full-ranked one-forms on a smooth, orientable, compact manifold (possibly with boundary) is metrically incomplete with respect to the induced geodesic distance of the generalized Ebin metric. We show a distance equality between the induced geodesic distances of the generalized Ebin metric on the space of full-ranked one-forms and the corresponding Riemannian metric defined on each fiber. Using this result, we immediately have a concrete description of the metric completion of the space of full-ranked one-forms. Additionally, we study the relationship between the space of full-ranked one-forms and the space of all Riemannian metrics, leading to quotient structures for the space of Riemannian metrics and its completion.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09916-x.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09916-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
The space of full-ranked one-forms on a smooth, orientable, compact manifold (possibly with boundary) is metrically incomplete with respect to the induced geodesic distance of the generalized Ebin metric. We show a distance equality between the induced geodesic distances of the generalized Ebin metric on the space of full-ranked one-forms and the corresponding Riemannian metric defined on each fiber. Using this result, we immediately have a concrete description of the metric completion of the space of full-ranked one-forms. Additionally, we study the relationship between the space of full-ranked one-forms and the space of all Riemannian metrics, leading to quotient structures for the space of Riemannian metrics and its completion.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.