{"title":"Obstacle avoidance system and wireless communication for an unmanned underwater vehicle for low depth water surfaces","authors":"A. Selvakumar, Vivek Ghodeswar","doi":"10.1504/IJAMECHS.2020.111300","DOIUrl":null,"url":null,"abstract":"An underwater glider is a most commonly used unmanned underwater vehicle but it has limitations to avoid obstructions in its path. To overcome this problem, the application of obstacle avoiding system is needed. This paper describes the development of an unmanned underwater vehicle (UUV) with integration of sensor-actuator network to avoid obstacles. To study the hydrodynamic behaviour of the proposed UUV, computational fluid dynamics (CFD) is carried out by considering pure surge and heave motion. The UUV is equipped with obstacle avoidance system with infra-red (IR) sensor and wireless communication module. Experimental tests are conducted to understand the behaviour of the UUV in low depth water surfaces and also to validate the CFD simulation results. The UUV's development, motion analyses and preliminary tests in obstacle avoidance are reported.","PeriodicalId":38583,"journal":{"name":"International Journal of Advanced Mechatronic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Mechatronic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAMECHS.2020.111300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
An underwater glider is a most commonly used unmanned underwater vehicle but it has limitations to avoid obstructions in its path. To overcome this problem, the application of obstacle avoiding system is needed. This paper describes the development of an unmanned underwater vehicle (UUV) with integration of sensor-actuator network to avoid obstacles. To study the hydrodynamic behaviour of the proposed UUV, computational fluid dynamics (CFD) is carried out by considering pure surge and heave motion. The UUV is equipped with obstacle avoidance system with infra-red (IR) sensor and wireless communication module. Experimental tests are conducted to understand the behaviour of the UUV in low depth water surfaces and also to validate the CFD simulation results. The UUV's development, motion analyses and preliminary tests in obstacle avoidance are reported.