The effects of quercetin on antioxidant and cytokine levels in rat hippocampus exposed to acute cadmium toxicity

Q4 Biochemistry, Genetics and Molecular Biology
I. Kisadere, N. Dönmez, H. H. Dönmez
{"title":"The effects of quercetin on antioxidant and cytokine levels in rat hippocampus exposed to acute cadmium toxicity","authors":"I. Kisadere, N. Dönmez, H. H. Dönmez","doi":"10.37212/JCNOS.584684","DOIUrl":null,"url":null,"abstract":"The aim of this study was to determine cadmium neurotoxicity (Branca et al.  2018) and beneficial effect of quercetin (QE) (Kanter et al.  2016) against on neuronal damage in hippocampus exposed with acute cadmium (Cd). Adult male Wistar-Albino rats (n = 30) were used and divided into four groups as Control (C, n = 6), Cadmium (Cd, n = 8), Quercetin (Q, n = 8) and Cadmium + Quercetin (Cd + Q, n = 8). Cadmium (CdCl2, 4 mg kg-1 daily, s.c) were administrated to Cd and Cd+Q groups, and Quercetin (Q, 50 mg kg-1 daily, i.p) were administrated to Q and Cd + Q groups for 3 days, respectively. At 4th day after the treatments, hippocampal samples were taken from the four groups. Cadmium decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels and the SOD activity and GSH level were markedly (p< 0.05) lower in Cd group than in the Q and C groups. Lipid peroxidation (MDA) levels were higher in Cd group when compared to the control, Q and Cd+Q groups. IL1 levels were found statistically higher in Cd group than in the control, Q and Cd+Q groups. IL-6 and TNF-alfa levels were significantly (p< 0.05) higher in Cd and Cd+Q groups than the Q and C groups.  In addition, IL10 levels were detected the lowest in Cd group when compared to other groups.  In conclusion, our results show that quercetin can be beneficial against to neurotoxic effects of acute cadmium toxicity in the rat hippocampus through upregulation of antioxidant system but down regulation of cytokine levels.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/JCNOS.584684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of this study was to determine cadmium neurotoxicity (Branca et al.  2018) and beneficial effect of quercetin (QE) (Kanter et al.  2016) against on neuronal damage in hippocampus exposed with acute cadmium (Cd). Adult male Wistar-Albino rats (n = 30) were used and divided into four groups as Control (C, n = 6), Cadmium (Cd, n = 8), Quercetin (Q, n = 8) and Cadmium + Quercetin (Cd + Q, n = 8). Cadmium (CdCl2, 4 mg kg-1 daily, s.c) were administrated to Cd and Cd+Q groups, and Quercetin (Q, 50 mg kg-1 daily, i.p) were administrated to Q and Cd + Q groups for 3 days, respectively. At 4th day after the treatments, hippocampal samples were taken from the four groups. Cadmium decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels and the SOD activity and GSH level were markedly (p< 0.05) lower in Cd group than in the Q and C groups. Lipid peroxidation (MDA) levels were higher in Cd group when compared to the control, Q and Cd+Q groups. IL1 levels were found statistically higher in Cd group than in the control, Q and Cd+Q groups. IL-6 and TNF-alfa levels were significantly (p< 0.05) higher in Cd and Cd+Q groups than the Q and C groups.  In addition, IL10 levels were detected the lowest in Cd group when compared to other groups.  In conclusion, our results show that quercetin can be beneficial against to neurotoxic effects of acute cadmium toxicity in the rat hippocampus through upregulation of antioxidant system but down regulation of cytokine levels.
槲皮素对急性镉中毒大鼠海马抗氧化及细胞因子水平的影响
本研究的目的是确定镉的神经毒性(Branca et al. 2018)和槲皮素(QE) (Kanter et al. 2016)对暴露于急性镉(Cd)的海马神经元损伤的有益作用。选用成年雄性wiast - albino大鼠30只,分为对照(C, n = 6)、镉(Cd, n = 8)、槲皮素(Q, n = 8)和镉+槲皮素(Cd +Q, n = 8) 4组,Cd组和Cd+Q组分别给予镉(CdCl2, 4 mg kg-1 / d, s.c)和槲皮素(Q, 50 mg kg-1 / d, i.p),试验期为3 d。治疗后第4天,取各组海马标本。镉降低了超氧化物歧化酶(SOD)和谷胱甘肽(GSH)水平,且Cd组SOD活性和谷胱甘肽水平显著(p< 0.05)低于Q和C组。脂质过氧化(MDA)水平在Cd组高于对照组、Q组和Cd+Q组。Cd组il - 1水平明显高于对照组、Q组和Cd+Q组。Cd和Cd+Q组IL-6和tnf - α水平显著高于Q和C组(p< 0.05)。此外,与其他各组相比,Cd组检测到的IL10水平最低。综上所述,槲皮素可通过上调抗氧化系统而下调细胞因子水平来对抗急性镉中毒大鼠海马的神经毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cellular Neuroscience and Oxidative Stress
Journal of Cellular Neuroscience and Oxidative Stress Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.10
自引率
0.00%
发文量
8
期刊介绍: Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信