{"title":"Interlacement limit of a stopped random walk trace on a torus","authors":"Antal A. J'arai, Minwei Sun","doi":"10.1017/apr.2023.24","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We consider a simple random walk on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline1.png\" />\n\t\t<jats:tex-math>\n$\\mathbb{Z}^d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> started at the origin and stopped on its first exit time from <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline2.png\" />\n\t\t<jats:tex-math>\n$({-}L,L)^d \\cap \\mathbb{Z}^d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Write <jats:italic>L</jats:italic> in the form <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline3.png\" />\n\t\t<jats:tex-math>\n$L = m N$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline4.png\" />\n\t\t<jats:tex-math>\n$m = m(N)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:italic>N</jats:italic> an integer going to infinity in such a way that <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline5.png\" />\n\t\t<jats:tex-math>\n$L^2 \\sim A N^d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for some real constant <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline6.png\" />\n\t\t<jats:tex-math>\n$A \\gt 0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Our main result is that for <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline7.png\" />\n\t\t<jats:tex-math>\n$d \\ge 3$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, the projection of the stopped trajectory to the <jats:italic>N</jats:italic>-torus locally converges, away from the origin, to an interlacement process at level <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline8.png\" />\n\t\t<jats:tex-math>\n$A d \\sigma_1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline9.png\" />\n\t\t<jats:tex-math>\n$\\sigma_1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is the exit time of a Brownian motion from the unit cube <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0001867823000241_inline10.png\" />\n\t\t<jats:tex-math>\n$({-}1,1)^d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009).</jats:p>","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a simple random walk on
$\mathbb{Z}^d$
started at the origin and stopped on its first exit time from
$({-}L,L)^d \cap \mathbb{Z}^d$
. Write L in the form
$L = m N$
with
$m = m(N)$
and N an integer going to infinity in such a way that
$L^2 \sim A N^d$
for some real constant
$A \gt 0$
. Our main result is that for
$d \ge 3$
, the projection of the stopped trajectory to the N-torus locally converges, away from the origin, to an interlacement process at level
$A d \sigma_1$
, where
$\sigma_1$
is the exit time of a Brownian motion from the unit cube
$({-}1,1)^d$
that is independent of the interlacement process. The above problem is a variation on results of Windisch (2008) and Sznitman (2009).
期刊介绍:
The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.