Data-Centric Engineering in modern science from the perspective of a statistician, an engineer, and a software developer

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Christophe Ley, Mike Tibolt, Dirk Fromme
{"title":"Data-Centric Engineering in modern science from the perspective of a statistician, an engineer, and a software developer","authors":"Christophe Ley, Mike Tibolt, Dirk Fromme","doi":"10.1017/dce.2020.2","DOIUrl":null,"url":null,"abstract":"Abstract Data-Centric Engineering is an emerging branch of science that certainly will take on a leading role in data-driven research. We live in the Big Data era with huge amounts of available data and unseen computing power, and therefore a crafty combination of Statistics (or, in more modern terms, Data Science), Computer Science and Engineering is required to filter out the most important information, master the ever more difficult challenges of a changing world and open new paths. In this paper, we will highlight some of these aspects from a combined perspective of a statistician, an engineer and a software developer. In particular, we will focus on sound data handling and analysis, computational science in Structural Engineering, data care, security and monitoring, and conclude with an outlook on future developments.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/dce.2020.2","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2020.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Data-Centric Engineering is an emerging branch of science that certainly will take on a leading role in data-driven research. We live in the Big Data era with huge amounts of available data and unseen computing power, and therefore a crafty combination of Statistics (or, in more modern terms, Data Science), Computer Science and Engineering is required to filter out the most important information, master the ever more difficult challenges of a changing world and open new paths. In this paper, we will highlight some of these aspects from a combined perspective of a statistician, an engineer and a software developer. In particular, we will focus on sound data handling and analysis, computational science in Structural Engineering, data care, security and monitoring, and conclude with an outlook on future developments.
从统计学家、工程师和软件开发人员的角度看现代科学中的以数据为中心的工程
摘要数据中心工程是一个新兴的科学分支,它肯定会在数据驱动的研究中发挥主导作用。我们生活在大数据时代,拥有大量可用数据和看不见的计算能力,因此需要将统计学(或者更现代的说法是数据科学)、计算机科学和工程巧妙地结合起来,以过滤出最重要的信息,掌握不断变化的世界中越来越困难的挑战,并开辟新的道路。在本文中,我们将从统计学家、工程师和软件开发人员的角度来强调其中的一些方面。特别是,我们将专注于健全的数据处理和分析、结构工程中的计算科学、数据护理、安全和监测,并对未来发展进行展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信