Incorporating Interventions to an Extended SEIRD Model with Vaccination: Application to COVID-19 in Qatar

Elizabeth B Amona, R. Ghanam, E. Boone, Indranil Sahoo, L. Abu-Raddad
{"title":"Incorporating Interventions to an Extended SEIRD Model with Vaccination: Application to COVID-19 in Qatar","authors":"Elizabeth B Amona, R. Ghanam, E. Boone, Indranil Sahoo, L. Abu-Raddad","doi":"10.6339/23-JDS1105","DOIUrl":null,"url":null,"abstract":"The COVID-19 outbreak of 2020 has required many governments to develop and adopt mathematical-statistical models of the pandemic for policy and planning purposes. To this end, this work provides a tutorial on building a compartmental model using Susceptible, Exposed, Infected, Recovered, Deaths and Vaccinated (SEIRDV) status through time. The proposed model uses interventions to quantify the impact of various government attempts made to slow the spread of the virus. Furthermore, a vaccination parameter is also incorporated in the model, which is inactive until the time the vaccine is deployed. A Bayesian framework is utilized to perform both parameter estimation and prediction. Predictions are made to determine when the peak Active Infections occur. We provide inferential frameworks for assessing the effects of government interventions on the dynamic progression of the pandemic, including the impact of vaccination. The proposed model also allows for quantification of number of excess deaths averted over the study period due to vaccination.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/23-JDS1105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The COVID-19 outbreak of 2020 has required many governments to develop and adopt mathematical-statistical models of the pandemic for policy and planning purposes. To this end, this work provides a tutorial on building a compartmental model using Susceptible, Exposed, Infected, Recovered, Deaths and Vaccinated (SEIRDV) status through time. The proposed model uses interventions to quantify the impact of various government attempts made to slow the spread of the virus. Furthermore, a vaccination parameter is also incorporated in the model, which is inactive until the time the vaccine is deployed. A Bayesian framework is utilized to perform both parameter estimation and prediction. Predictions are made to determine when the peak Active Infections occur. We provide inferential frameworks for assessing the effects of government interventions on the dynamic progression of the pandemic, including the impact of vaccination. The proposed model also allows for quantification of number of excess deaths averted over the study period due to vaccination.
将干预措施纳入扩展SEIRD模型与疫苗接种:在卡塔尔COVID-19中的应用
2020年2019冠状病毒病的爆发要求许多政府为政策和规划目的制定和采用大流行的数学统计模型。为此,本工作提供了一个关于建立一个间隔模型的教程,该模型使用易感、暴露、感染、恢复、死亡和接种(SEIRDV)状态的时间。提出的模型使用干预措施来量化政府为减缓病毒传播所做的各种尝试的影响。此外,模型中还包含了一个疫苗接种参数,该参数在部署疫苗之前处于非活动状态。采用贝叶斯框架进行参数估计和预测。预测是为了确定何时出现活跃感染高峰。我们为评估政府干预对流行病动态发展的影响提供了推论框架,包括疫苗接种的影响。拟议的模型还允许对研究期间因接种疫苗而避免的额外死亡人数进行量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信