M. Toyoda, Nobuki Fukui, T. Miyashita, T. Shimura, N. Mori
{"title":"Uncertainty of storm surge forecast using integrated atmospheric and storm surge model: a case study on Typhoon Haishen 2020","authors":"M. Toyoda, Nobuki Fukui, T. Miyashita, T. Shimura, N. Mori","doi":"10.1080/21664250.2021.1997506","DOIUrl":null,"url":null,"abstract":"ABSTRACT Hindcast experiments and pseudo-forecast experiments considering Typhoon Haishen (2020) were conducted using an atmospheric (WRF)-storm surge (GeoClaw) coupled model and a storm surge model with a parametric typhoon model. A series of simulations of the coupled model were used to quantify the error sources of the typhoon track and intensity in the forecast errors of storm surges. The results revealed that the typhoon track forecast had a larger error source for the storm surge forecast for the maximum surge height than the typhoon intensity. Furthermore, the parametric Holland typhoon model used in practice has an overestimation trend compared to the coupled model, and the parametric Holland typhoon model using WRF output was able to forecast the storm surge height near the typhoon (western Kyushu area) and its peak occurrence time accurately. However, the forecast accuracy tended to decrease as the distance from the typhoon to the target location increased. The pseudo-ensemble simulation of the storm surge forecast using forecast error information was conducted considering the uncertainty of the typhoon track forecast. The 20 ensemble forecast simulations revealed that the perturbed typhoon track simulation can increase the possibility of capturing the peak time of the storm surge.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":"64 1","pages":"135 - 150"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2021.1997506","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT Hindcast experiments and pseudo-forecast experiments considering Typhoon Haishen (2020) were conducted using an atmospheric (WRF)-storm surge (GeoClaw) coupled model and a storm surge model with a parametric typhoon model. A series of simulations of the coupled model were used to quantify the error sources of the typhoon track and intensity in the forecast errors of storm surges. The results revealed that the typhoon track forecast had a larger error source for the storm surge forecast for the maximum surge height than the typhoon intensity. Furthermore, the parametric Holland typhoon model used in practice has an overestimation trend compared to the coupled model, and the parametric Holland typhoon model using WRF output was able to forecast the storm surge height near the typhoon (western Kyushu area) and its peak occurrence time accurately. However, the forecast accuracy tended to decrease as the distance from the typhoon to the target location increased. The pseudo-ensemble simulation of the storm surge forecast using forecast error information was conducted considering the uncertainty of the typhoon track forecast. The 20 ensemble forecast simulations revealed that the perturbed typhoon track simulation can increase the possibility of capturing the peak time of the storm surge.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.