{"title":"Trivializing group actions on braided crossed tensor categories and graded braided tensor categories","authors":"César Galindo","doi":"10.2969/jmsj/85768576","DOIUrl":null,"url":null,"abstract":"For an abelian group $ A $, we study a close connection between braided crossed $ A $-categories with a trivialization of the $ A $-action and $ A $-graded braided tensor categories. Additionally, we prove that the obstruction to the existence of a trivialization of a categorical group action $T$ on a monoidal category $\\mathcal{C}$ is given by an element $O(T)\\in H^2(G,\\operatorname{Aut}_\\otimes(\\operatorname{Id}_{\\mathcal{C}}))$. In the case that $O(T)=0$, the set of obstructions form a torsor over $\\operatorname{Hom}(G,\\operatorname{Aut}_\\otimes(\\operatorname{Id}_{\\mathcal{C}}))$, where $\\operatorname{Aut}_\\otimes(\\operatorname{Id}_{\\mathcal{C}})$ is the abelian group of tensor natural automorphisms of the identity. \nThe cohomological interpretation of trivializations, together with the homotopical classification of (faithfully graded) braided $A$-crossed tensor categories developed in arXiv:0909.3140, allows us to provide a method for the construction of faithfully $A$-graded braided tensor categories. We work out two examples. First, we compute the obstruction to the existence of trivializations for the braided crossed category associated with a pointed semisimple tensor category. In the second example, we compute explicit formulas for the braided $\\mathbb{Z}/2$-crossed structures over Tambara-Yamagami fusion categories and, consequently, a conceptual interpretation of the results in arXiv:math/0011037 about the classification of braidings over Tambara-Yamagami categories.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/85768576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For an abelian group $ A $, we study a close connection between braided crossed $ A $-categories with a trivialization of the $ A $-action and $ A $-graded braided tensor categories. Additionally, we prove that the obstruction to the existence of a trivialization of a categorical group action $T$ on a monoidal category $\mathcal{C}$ is given by an element $O(T)\in H^2(G,\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}}))$. In the case that $O(T)=0$, the set of obstructions form a torsor over $\operatorname{Hom}(G,\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}}))$, where $\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}})$ is the abelian group of tensor natural automorphisms of the identity.
The cohomological interpretation of trivializations, together with the homotopical classification of (faithfully graded) braided $A$-crossed tensor categories developed in arXiv:0909.3140, allows us to provide a method for the construction of faithfully $A$-graded braided tensor categories. We work out two examples. First, we compute the obstruction to the existence of trivializations for the braided crossed category associated with a pointed semisimple tensor category. In the second example, we compute explicit formulas for the braided $\mathbb{Z}/2$-crossed structures over Tambara-Yamagami fusion categories and, consequently, a conceptual interpretation of the results in arXiv:math/0011037 about the classification of braidings over Tambara-Yamagami categories.
对于阿贝尔群$ A $,我们研究了$ A $-作用和$ A $-分级编织张量范畴之间的紧密联系。此外,我们证明了一元范畴$\mathcal{C}$上的范畴群作用$T$的平凡化存在的障碍是由H^2(G,\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}}) $中的元素$O(T)\给出的。在$O(T)=0$的情况下,障碍物集合在$\operatorname{hm}(G,\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}}))$上形成一个torsor,其中$\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}})$是单位元的张量自然自同构的阿贝尔群。平凡化的上同解释,以及arXiv:0909.3140中提出的(忠实分级)编织A交叉张量范畴的同局部分类,使我们能够提供一种构造忠实A分级编织张量范畴的方法。我们算出两个例子。首先,我们计算了与点半简单张量范畴相关的编织交叉范畴的琐屑化存在的障碍。在第二个例子中,我们计算了Tambara-Yamagami融合范畴上编织的$\mathbb{Z}/2$-交叉结构的显式公式,从而对arXiv:math/0011037中关于Tambara-Yamagami范畴上编织分类的结果进行了概念解释。