Trivializing group actions on braided crossed tensor categories and graded braided tensor categories

Pub Date : 2020-10-02 DOI:10.2969/jmsj/85768576
César Galindo
{"title":"Trivializing group actions on braided crossed tensor categories and graded braided tensor categories","authors":"César Galindo","doi":"10.2969/jmsj/85768576","DOIUrl":null,"url":null,"abstract":"For an abelian group $ A $, we study a close connection between braided crossed $ A $-categories with a trivialization of the $ A $-action and $ A $-graded braided tensor categories. Additionally, we prove that the obstruction to the existence of a trivialization of a categorical group action $T$ on a monoidal category $\\mathcal{C}$ is given by an element $O(T)\\in H^2(G,\\operatorname{Aut}_\\otimes(\\operatorname{Id}_{\\mathcal{C}}))$. In the case that $O(T)=0$, the set of obstructions form a torsor over $\\operatorname{Hom}(G,\\operatorname{Aut}_\\otimes(\\operatorname{Id}_{\\mathcal{C}}))$, where $\\operatorname{Aut}_\\otimes(\\operatorname{Id}_{\\mathcal{C}})$ is the abelian group of tensor natural automorphisms of the identity. \nThe cohomological interpretation of trivializations, together with the homotopical classification of (faithfully graded) braided $A$-crossed tensor categories developed in arXiv:0909.3140, allows us to provide a method for the construction of faithfully $A$-graded braided tensor categories. We work out two examples. First, we compute the obstruction to the existence of trivializations for the braided crossed category associated with a pointed semisimple tensor category. In the second example, we compute explicit formulas for the braided $\\mathbb{Z}/2$-crossed structures over Tambara-Yamagami fusion categories and, consequently, a conceptual interpretation of the results in arXiv:math/0011037 about the classification of braidings over Tambara-Yamagami categories.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/85768576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For an abelian group $ A $, we study a close connection between braided crossed $ A $-categories with a trivialization of the $ A $-action and $ A $-graded braided tensor categories. Additionally, we prove that the obstruction to the existence of a trivialization of a categorical group action $T$ on a monoidal category $\mathcal{C}$ is given by an element $O(T)\in H^2(G,\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}}))$. In the case that $O(T)=0$, the set of obstructions form a torsor over $\operatorname{Hom}(G,\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}}))$, where $\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}})$ is the abelian group of tensor natural automorphisms of the identity. The cohomological interpretation of trivializations, together with the homotopical classification of (faithfully graded) braided $A$-crossed tensor categories developed in arXiv:0909.3140, allows us to provide a method for the construction of faithfully $A$-graded braided tensor categories. We work out two examples. First, we compute the obstruction to the existence of trivializations for the braided crossed category associated with a pointed semisimple tensor category. In the second example, we compute explicit formulas for the braided $\mathbb{Z}/2$-crossed structures over Tambara-Yamagami fusion categories and, consequently, a conceptual interpretation of the results in arXiv:math/0011037 about the classification of braidings over Tambara-Yamagami categories.
分享
查看原文
编织交叉张量范畴和渐变编织张量范畴上群作用的琐碎化
对于阿贝尔群$ A $,我们研究了$ A $-作用和$ A $-分级编织张量范畴之间的紧密联系。此外,我们证明了一元范畴$\mathcal{C}$上的范畴群作用$T$的平凡化存在的障碍是由H^2(G,\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}}) $中的元素$O(T)\给出的。在$O(T)=0$的情况下,障碍物集合在$\operatorname{hm}(G,\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}}))$上形成一个torsor,其中$\operatorname{Aut}_\otimes(\operatorname{Id}_{\mathcal{C}})$是单位元的张量自然自同构的阿贝尔群。平凡化的上同解释,以及arXiv:0909.3140中提出的(忠实分级)编织A交叉张量范畴的同局部分类,使我们能够提供一种构造忠实A分级编织张量范畴的方法。我们算出两个例子。首先,我们计算了与点半简单张量范畴相关的编织交叉范畴的琐屑化存在的障碍。在第二个例子中,我们计算了Tambara-Yamagami融合范畴上编织的$\mathbb{Z}/2$-交叉结构的显式公式,从而对arXiv:math/0011037中关于Tambara-Yamagami范畴上编织分类的结果进行了概念解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信