De Bruijn identities in different Markovian channels

IF 0.8 4区 数学 Q2 MATHEMATICS
H. Emamirad, A. Rougirel
{"title":"De Bruijn identities in different Markovian channels","authors":"H. Emamirad, A. Rougirel","doi":"10.58997/ejde.2023.12","DOIUrl":null,"url":null,"abstract":"De Bruijn's identity in information theory states that if u is the solution of the heat equation, then the time derivative of the Shannon entropy for this solution is equal to the amount of Fisher information at u. In this article, we show how this identity changes if we replace the heat channel by the Fokker Planck, or passing from Fokker Planck to Ornstein-Uhlenbeck channels. Through these passages we investigate the different properties of these solutions. We exclusively dissect different properties of Ornstein-Uhlenbeck semigroup given by the Mehler formula expression.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.12","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

De Bruijn's identity in information theory states that if u is the solution of the heat equation, then the time derivative of the Shannon entropy for this solution is equal to the amount of Fisher information at u. In this article, we show how this identity changes if we replace the heat channel by the Fokker Planck, or passing from Fokker Planck to Ornstein-Uhlenbeck channels. Through these passages we investigate the different properties of these solutions. We exclusively dissect different properties of Ornstein-Uhlenbeck semigroup given by the Mehler formula expression.
德布鲁因恒等式在不同的马尔可夫通道中
德布鲁因在信息论中的恒等式指出,如果u是热方程的解,那么该解的香农熵的时间导数等于u处的Fisher信息量。在本文中,我们展示了如果我们用福克-普朗克通道取代热通道,或者从福克-普朗克到奥恩斯坦-乌伦贝克通道,这种恒等式是如何变化的。通过这些段落,我们研究了这些解的不同性质。我们专门剖析了由Mehler公式表达式给出的Ornstein-Uhlenbeck半群的不同性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信