{"title":"Thixotropic yielding behavior of MLPS colloidal suspension","authors":"Yixuan Hou, Zhao Jin, Xinzhe Que, Dongdong Yuan, Yonggang Lin, Mingquan Yu, Yongchao Zhou, Yiping Zhang","doi":"10.1007/s00397-023-01396-x","DOIUrl":null,"url":null,"abstract":"<div><p>The colloidal suspension of magnesium lithium phyllosilicate (MLPS), a synthetic clay that shows complex rheological behaviors, is a promising analogue for natural soft clay. The significant thixotropy of MLPS colloidal suspension controls the solid-liquid transition and affects the application of the material. In this work, the thixotropic yielding behaviors of MLPS with concentrations of 3, 4, 5, and 6 wt% were investigated utilizing rheological testing methods. The static and dynamic yield stresses measured by different methods were analyzed and compared. The flow curves of shear rate ramp tests show inapplicability in determining yield stresses due to shear banding, while the yield stresses obtained by shear stress ramp and oscillatory shear tests exhibit satisfactory consistency. Coupled with a structural kinetics equation, a thixotropic visco-plastic model incorporating static and dynamic yield stress was established to describe the thixotropic yielding behavior of MLPS suspension. The model parameters were conveniently determined via shear ramp tests and step change in shear rate tests with good fitting performance, and the concentration-dependent characteristics of the parameters were also discussed. Based on model prediction and experimental results, the interactions between shear stress, shear rate, and microstructure were analyzed in steady and transient states.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"62 5-6","pages":"285 - 302"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-023-01396-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-023-01396-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The colloidal suspension of magnesium lithium phyllosilicate (MLPS), a synthetic clay that shows complex rheological behaviors, is a promising analogue for natural soft clay. The significant thixotropy of MLPS colloidal suspension controls the solid-liquid transition and affects the application of the material. In this work, the thixotropic yielding behaviors of MLPS with concentrations of 3, 4, 5, and 6 wt% were investigated utilizing rheological testing methods. The static and dynamic yield stresses measured by different methods were analyzed and compared. The flow curves of shear rate ramp tests show inapplicability in determining yield stresses due to shear banding, while the yield stresses obtained by shear stress ramp and oscillatory shear tests exhibit satisfactory consistency. Coupled with a structural kinetics equation, a thixotropic visco-plastic model incorporating static and dynamic yield stress was established to describe the thixotropic yielding behavior of MLPS suspension. The model parameters were conveniently determined via shear ramp tests and step change in shear rate tests with good fitting performance, and the concentration-dependent characteristics of the parameters were also discussed. Based on model prediction and experimental results, the interactions between shear stress, shear rate, and microstructure were analyzed in steady and transient states.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."