Multi-scale habitat selection and spatial analysis reveals a mismatch between the wintering distribution of a threatened population of Taiga Bean Geese Anser fabalis and its protected area
Michael Thornton, C. Mitchell, L. Griffin, R. Briers, B. Minshull, Angus Maciver, Patrick J. C. White
{"title":"Multi-scale habitat selection and spatial analysis reveals a mismatch between the wintering distribution of a threatened population of Taiga Bean Geese Anser fabalis and its protected area","authors":"Michael Thornton, C. Mitchell, L. Griffin, R. Briers, B. Minshull, Angus Maciver, Patrick J. C. White","doi":"10.1080/00063657.2021.1966740","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Capsule Our multi-scale habitat selection and spatial analysis of a threatened population of Taiga Bean Geese Anser fabalis highlights the importance of monitoring and review programmes to determine whether species conservation measures are being implemented at the correct spatio-temporal scales. Aims To undertake a habitat selection and spatial analysis of an internationally important population of Taiga Bean Geese, and quantify the extent to which their foraging range overlaps with a protected area classified to protect their roost sites and foraging areas. Methods A five-year field count dataset was used to quantify foraging habitat selection at the population range scale. In addition, global positioning system (GPS)/ultra high frequency loggers were attached to 12 birds and GPS location data were collected to quantify foraging habitat selection at an individual foraging range scale. Results Generalized linear models predicted that, at the population foraging range scale, Taiga Bean Geese selected agriculturally improved pasture, and this selection was more pronounced at greater distances from public roads. At an individual foraging range scale, compositional analysis revealed that agriculturally improved pasture was significantly selected over all other habitats. There was a substantial mismatch between their individual foraging ranges and the protected area, with less than 35% (median: 21%; range 9.5–31.9%) of their individual full foraging ranges overlapping with the protected area. Discussion Fixed protected areas may fail to fully accommodate the spatio-temporal foraging dynamics of geese, however a more appropriate conservation measure may be the use of flexible management schemes to maintain their foraging areas within and beyond protected area boundaries. This case study highlights the importance of developing dynamic conservation strategies for species liable to undergo range shifts.","PeriodicalId":55353,"journal":{"name":"Bird Study","volume":"68 1","pages":"157 - 173"},"PeriodicalIF":0.7000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bird Study","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/00063657.2021.1966740","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT
Capsule Our multi-scale habitat selection and spatial analysis of a threatened population of Taiga Bean Geese Anser fabalis highlights the importance of monitoring and review programmes to determine whether species conservation measures are being implemented at the correct spatio-temporal scales. Aims To undertake a habitat selection and spatial analysis of an internationally important population of Taiga Bean Geese, and quantify the extent to which their foraging range overlaps with a protected area classified to protect their roost sites and foraging areas. Methods A five-year field count dataset was used to quantify foraging habitat selection at the population range scale. In addition, global positioning system (GPS)/ultra high frequency loggers were attached to 12 birds and GPS location data were collected to quantify foraging habitat selection at an individual foraging range scale. Results Generalized linear models predicted that, at the population foraging range scale, Taiga Bean Geese selected agriculturally improved pasture, and this selection was more pronounced at greater distances from public roads. At an individual foraging range scale, compositional analysis revealed that agriculturally improved pasture was significantly selected over all other habitats. There was a substantial mismatch between their individual foraging ranges and the protected area, with less than 35% (median: 21%; range 9.5–31.9%) of their individual full foraging ranges overlapping with the protected area. Discussion Fixed protected areas may fail to fully accommodate the spatio-temporal foraging dynamics of geese, however a more appropriate conservation measure may be the use of flexible management schemes to maintain their foraging areas within and beyond protected area boundaries. This case study highlights the importance of developing dynamic conservation strategies for species liable to undergo range shifts.
期刊介绍:
Bird Study publishes high quality papers relevant to the sphere of interest of the British Trust for Ornithology: broadly defined as field ornithology; especially when related to evidence-based bird conservation. Papers are especially welcome on: patterns of distribution and abundance, movements, habitat preferences, developing field census methods, ringing and other techniques for marking and tracking birds.
Bird Study concentrates on birds that occur in the Western Palearctic. This includes research on their biology outside of the Western Palearctic, for example on wintering grounds in Africa. Bird Study also welcomes papers from any part of the world if they are of general interest to the broad areas of investigation outlined above.
Bird Study publishes the following types of articles:
-Original research papers of any length
-Short original research papers (less than 2500 words in length)
-Scientific reviews
-Forum articles covering general ornithological issues, including non-scientific ones
-Short feedback articles that make scientific criticisms of papers published recently in the Journal.