Cluster Scattering Diagrams and Theta Functions for Reciprocal Generalized Cluster Algebras

Pub Date : 2022-12-09 DOI:10.1007/s00026-022-00623-1
Man-Wai Cheung, Elizabeth Kelley, Gregg Musiker
{"title":"Cluster Scattering Diagrams and Theta Functions for Reciprocal Generalized Cluster Algebras","authors":"Man-Wai Cheung,&nbsp;Elizabeth Kelley,&nbsp;Gregg Musiker","doi":"10.1007/s00026-022-00623-1","DOIUrl":null,"url":null,"abstract":"<div><p>We give a construction of generalized cluster varieties and generalized cluster scattering diagrams for reciprocal generalized cluster algebras, the latter of which were defined by Chekhov and Shapiro. These constructions are analogous to the structures given for ordinary cluster algebras in the work of Gross, Hacking, Keel, and Kontsevich. As a consequence of these constructions, we are also able to construct theta functions for generalized cluster algebras, again in the reciprocal case, and demonstrate a number of their structural properties.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00623-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We give a construction of generalized cluster varieties and generalized cluster scattering diagrams for reciprocal generalized cluster algebras, the latter of which were defined by Chekhov and Shapiro. These constructions are analogous to the structures given for ordinary cluster algebras in the work of Gross, Hacking, Keel, and Kontsevich. As a consequence of these constructions, we are also able to construct theta functions for generalized cluster algebras, again in the reciprocal case, and demonstrate a number of their structural properties.

Abstract Image

分享
查看原文
互易广义簇代数的簇散射图和Theta函数
我们给出了互反广义簇代数的广义簇变体和广义簇散射图的构造,后者是由Chekhov和Shapiro定义的。这些构造类似于Gross、Hacking、Keel和Kontsevich工作中为普通簇代数给出的结构。由于这些构造,我们也能够构造广义簇代数的θ函数,同样是在倒数的情况下,并证明了它们的一些结构性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信