{"title":"Twisting structures and morphisms up to strong homotopy","authors":"Kathryn Hess, Paul-Eugène Parent, Jonathan Scott","doi":"10.1007/s40062-019-00249-w","DOIUrl":null,"url":null,"abstract":"<p>We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar-cobar adjunction for quadratic operads. The comonad associated to this adjunction turns out to be, in several cases, a standard Koszul construction. The associated Kleisli categories are the “strong homotopy” morphism categories. In an appendix, we study the co-ring associated to the canonical morphism of cooperads <img>, which is exactly the two-sided Koszul resolution of the associative operad <img>, also known as the Alexander-Whitney co-ring.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00249-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00249-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar-cobar adjunction for quadratic operads. The comonad associated to this adjunction turns out to be, in several cases, a standard Koszul construction. The associated Kleisli categories are the “strong homotopy” morphism categories. In an appendix, we study the co-ring associated to the canonical morphism of cooperads , which is exactly the two-sided Koszul resolution of the associative operad , also known as the Alexander-Whitney co-ring.