Robust nonparametric estimation for the volatility of financial market

IF 0.6 Q4 BUSINESS, FINANCE
Chu-Ching Kao, Yuping Song
{"title":"Robust nonparametric estimation for the volatility of financial market","authors":"Chu-Ching Kao, Yuping Song","doi":"10.1142/s2424786322500219","DOIUrl":null,"url":null,"abstract":"The occurrence of a macroeconomic policy would lead to a jump of financial data and the presence of jump behaviors might make the statistical methods for high-frequency sampling data to face new challenges. This paper will use the threshold function technique to disentangle the continuous part and the jump part from the high frequency financial data. Moreover, in the financial practices, the abnormal observations contained in the data could cause bias from nonparametric estimation based on least squares. The paper will employ the local M estimation to provide a robust estimator for the unknown diffusion coefficient of the diffusion model with jumps under high frequency sampling data. Under certain conditions for the initial values, this paper further considers one-step local M estimation for the unknown diffusion coefficient which can reduce the calculation quantity under the estimation efficiency. The Monte Carlo numerical simulation results verify that compared with the local linear threshold estimator, the threshold one-step local M estimator is more accurate and more robust. Finally, the threshold one-step local M estimator in this paper is applied to the Shanghai composite index of 2015 and 2020 in China and the Nasdaq index of 2020 in USA, which illustrates the method considered in this paper possesses good finite sample properties.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424786322500219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of a macroeconomic policy would lead to a jump of financial data and the presence of jump behaviors might make the statistical methods for high-frequency sampling data to face new challenges. This paper will use the threshold function technique to disentangle the continuous part and the jump part from the high frequency financial data. Moreover, in the financial practices, the abnormal observations contained in the data could cause bias from nonparametric estimation based on least squares. The paper will employ the local M estimation to provide a robust estimator for the unknown diffusion coefficient of the diffusion model with jumps under high frequency sampling data. Under certain conditions for the initial values, this paper further considers one-step local M estimation for the unknown diffusion coefficient which can reduce the calculation quantity under the estimation efficiency. The Monte Carlo numerical simulation results verify that compared with the local linear threshold estimator, the threshold one-step local M estimator is more accurate and more robust. Finally, the threshold one-step local M estimator in this paper is applied to the Shanghai composite index of 2015 and 2020 in China and the Nasdaq index of 2020 in USA, which illustrates the method considered in this paper possesses good finite sample properties.
金融市场波动的鲁棒非参数估计
宏观经济政策的发生将导致金融数据的跳跃,而跳跃行为的存在可能会使高频抽样数据的统计方法面临新的挑战。本文将利用阈值函数技术从高频财务数据中分离出连续部分和跳跃部分。此外,在金融实践中,数据中包含的异常观测可能会导致基于最小二乘的非参数估计的偏差。本文将使用局部M估计来为高频采样数据下具有跳跃的扩散模型的未知扩散系数提供一个鲁棒估计。在初始值一定的条件下,本文进一步考虑了未知扩散系数的一步局部M估计,在估计效率较低的情况下,可以减少计算量。蒙特卡罗数值模拟结果验证了阈值一步局部M估计器与局部线性阈值估计器相比,具有更高的精度和鲁棒性。最后,将本文的阈值一步局部M估计量应用于中国2015年和2020年的上证综指和美国2020年的纳斯达克指数,说明本文所考虑的方法具有良好的有限样本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信