{"title":"Stochastic comparison on active redundancy allocation to k-out-of-n systems with statistically dependent component and redundancy lifetimes","authors":"Yinping You, Xiaohu Li, Xiaoqin Li","doi":"10.1017/apr.2022.70","DOIUrl":null,"url":null,"abstract":"\n In the literature on active redundancy allocation, the redundancy lifetimes are usually postulated to be independent of the component lifetimes for the sake of technical convenience. However, this unrealistic assumption leads to a risk of inaccurately evaluating system reliability, because it overlooks the statistical dependence of lifetimes due to common stresses. In this study, for k-out-of-n:F systems with component and redundancy lifetimes linked by the Archimedean copula, we show that (i) allocating more homogeneous redundancies to the less reliable components tends to produce a redundant system with stochastically larger lifetime, (ii) the reliability of the redundant system can be uniformly maximized through balancing the allocation of homogeneous redundancies in the context of homogeneous components, and (iii) allocating a more reliable matched redundancy to a less reliable component produces a more reliable system. These novel results on k-out-of-n:F systems in which component and redundancy lifetimes are statistically dependent are more applicable to the complicated engineering systems that arise in real practice. Some numerical examples are also presented to illustrate these findings.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.70","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
In the literature on active redundancy allocation, the redundancy lifetimes are usually postulated to be independent of the component lifetimes for the sake of technical convenience. However, this unrealistic assumption leads to a risk of inaccurately evaluating system reliability, because it overlooks the statistical dependence of lifetimes due to common stresses. In this study, for k-out-of-n:F systems with component and redundancy lifetimes linked by the Archimedean copula, we show that (i) allocating more homogeneous redundancies to the less reliable components tends to produce a redundant system with stochastically larger lifetime, (ii) the reliability of the redundant system can be uniformly maximized through balancing the allocation of homogeneous redundancies in the context of homogeneous components, and (iii) allocating a more reliable matched redundancy to a less reliable component produces a more reliable system. These novel results on k-out-of-n:F systems in which component and redundancy lifetimes are statistically dependent are more applicable to the complicated engineering systems that arise in real practice. Some numerical examples are also presented to illustrate these findings.
期刊介绍:
The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.