{"title":"A Quantitative Description of the Causes of Color in Corundum","authors":"Emily V. Dubinsky, J. Stone‐Sundberg, J. Emmett","doi":"10.5741/gems.56.1.2","DOIUrl":null,"url":null,"abstract":"GEMS & GEMOLOGY SPRING 2020 Gemstones are valued for their beauty, rarity, and durability, and what typically captures our attention is their magnificent array of colors. Corundum exhibits an extremely wide range of colors in nature (figure 1). From pigeon’s blood red ruby to cornflower blue and lemon yellow sapphire, nearly every color is represented. The only corundum color not represented in nature is a saturated intense emerald green. However, less intense olive green to teal green stones are often found in basalt-hosted corundum deposits. Corundum’s broad range of colors is related to its detailed chemistry. Some minerals possess inherent color because the chromophore is one of the basic chemical components of its makeup. Such stones are termed idiochromatic, meaning self-colored. For example, turquoise, whose chemical formula is CuAl6(PO4)4(OH)8•4H2O, is colored by copper, a primary component of its structure. Other minerals such as corundum are, when very pure, completely colorless. In fact, pure corundum, with the chemical formula Al2O3, is absolutely transparent from the deep ultraviolet region into the infrared. Such minerals are termed allochromatic. Their colors in nature are caused by minor impurities, referred to as trace elements, or other point defects in the crystal lattice that have been incorporated during growth or later equilibration in nature. The causes of color in corundum are many and have been primarily addressed in a non-quantitative way for many years (see, for example, Fritsch and Rossman, 1987, 1988; Häger, 2001; Emmett et al., 2003). Trace elements themselves can be the direct cause of color. Cr3+, for example, creates pink and red coloration in corundum. Trace elements can also interact with each other, creating a new chromophore. The Fe2+-Ti4+ pair is such an example, strongly absorbing in the yellow and red regions of the spectrum and thus creating magnificent blue sapphires. When beryllium-diffused corundum entered the marketplace, we were surprised by the wide range of colors that were produced, seemingly by a single element (Emmett et al., 2003). Measurements of the beryllium levels showed that the concentrations were generally from a few to a few tens of parts per million atomic (ppma), yet the colors produced were often intense. For comparison, red coloration in corundum requires several hundred to a few thousand ppma of Cr3+, a concentration at least two orders of magnitude greater than Be2+, to produce strong color. Our studies of the beryllium-diffused stones (Emmett et al., 2003) demonstrated that the Be2+ ion itself was not the cause of color. However, replacing a trivalent aluminum ion with a divalent beryllium ion required the creation of a trapped hole (h•) for A QUANTITATIVE DESCRIPTION OF THE CAUSES OF COLOR IN CORUNDUM","PeriodicalId":12600,"journal":{"name":"Gems & Gemology","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gems & Gemology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5741/gems.56.1.2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 19
Abstract
GEMS & GEMOLOGY SPRING 2020 Gemstones are valued for their beauty, rarity, and durability, and what typically captures our attention is their magnificent array of colors. Corundum exhibits an extremely wide range of colors in nature (figure 1). From pigeon’s blood red ruby to cornflower blue and lemon yellow sapphire, nearly every color is represented. The only corundum color not represented in nature is a saturated intense emerald green. However, less intense olive green to teal green stones are often found in basalt-hosted corundum deposits. Corundum’s broad range of colors is related to its detailed chemistry. Some minerals possess inherent color because the chromophore is one of the basic chemical components of its makeup. Such stones are termed idiochromatic, meaning self-colored. For example, turquoise, whose chemical formula is CuAl6(PO4)4(OH)8•4H2O, is colored by copper, a primary component of its structure. Other minerals such as corundum are, when very pure, completely colorless. In fact, pure corundum, with the chemical formula Al2O3, is absolutely transparent from the deep ultraviolet region into the infrared. Such minerals are termed allochromatic. Their colors in nature are caused by minor impurities, referred to as trace elements, or other point defects in the crystal lattice that have been incorporated during growth or later equilibration in nature. The causes of color in corundum are many and have been primarily addressed in a non-quantitative way for many years (see, for example, Fritsch and Rossman, 1987, 1988; Häger, 2001; Emmett et al., 2003). Trace elements themselves can be the direct cause of color. Cr3+, for example, creates pink and red coloration in corundum. Trace elements can also interact with each other, creating a new chromophore. The Fe2+-Ti4+ pair is such an example, strongly absorbing in the yellow and red regions of the spectrum and thus creating magnificent blue sapphires. When beryllium-diffused corundum entered the marketplace, we were surprised by the wide range of colors that were produced, seemingly by a single element (Emmett et al., 2003). Measurements of the beryllium levels showed that the concentrations were generally from a few to a few tens of parts per million atomic (ppma), yet the colors produced were often intense. For comparison, red coloration in corundum requires several hundred to a few thousand ppma of Cr3+, a concentration at least two orders of magnitude greater than Be2+, to produce strong color. Our studies of the beryllium-diffused stones (Emmett et al., 2003) demonstrated that the Be2+ ion itself was not the cause of color. However, replacing a trivalent aluminum ion with a divalent beryllium ion required the creation of a trapped hole (h•) for A QUANTITATIVE DESCRIPTION OF THE CAUSES OF COLOR IN CORUNDUM
期刊介绍:
G&G publishes original articles on gem materials and research in gemology and related fields. Manuscript topics include, but are not limited to:
Laboratory or field research;
Comprehensive reviews of important topics in the field;
Synthetics, imitations, and treatments;
Trade issues;
Recent discoveries or developments in gemology and related fields (e.g., new instruments or identification techniques, gem minerals for the collector, and lapidary techniques);
Descriptions of notable gem materials and localities;
Jewelry manufacturing arts, historical jewelry, and museum exhibits.