{"title":"Dynamical Property of the Shift Map under Group Action","authors":"Zhan-Huai Ji","doi":"10.1155/2022/5969042","DOIUrl":null,"url":null,"abstract":"<jats:p>Firstly, we introduced the concept of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>Lipschitz tracking property, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>asymptotic average tracking property, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>periodic tracking property. Secondly, we studied their dynamical properties and topological structure and obtained the following conclusions: (1) let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> be compact metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>space and the metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>d</mi>\n </math>\n </jats:inline-formula> be invariant to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>. Then, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>σ</mi>\n </math>\n </jats:inline-formula> has <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mover accent=\"true\">\n <mi>G</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>asymptotic average tracking property; (2) let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> be compact metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>space and the metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>d</mi>\n </math>\n </jats:inline-formula> be invariant to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>. Then, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>σ</mi>\n </math>\n </jats:inline-formula> has <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mover accent=\"true\">\n <mi>G</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>Lipschitz tracking property; (3) let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> be compact metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>space and the metric <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>d</mi>\n </math>\n </jats:inline-formula> be invariant to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <mi>G</mi>\n </math>\n </jats:inline-formula>. Then, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <mi>σ</mi>\n </math>\n </jats:inline-formula> has <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\">\n <mover accent=\"true\">\n <mi>G</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>periodic tracking property. The above results make up for the lack of theory of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>Lipschitz tracking property, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>asymptotic average tracking property, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\">\n <mi>G</mi>\n <mo>‐</mo>\n </math>\n </jats:inline-formula>periodic tracking property in infinite product space under group action.</jats:p>","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/5969042","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Firstly, we introduced the concept of Lipschitz tracking property, asymptotic average tracking property, and periodic tracking property. Secondly, we studied their dynamical properties and topological structure and obtained the following conclusions: (1) let be compact metric space and the metric be invariant to . Then, has asymptotic average tracking property; (2) let be compact metric space and the metric be invariant to . Then, has Lipschitz tracking property; (3) let be compact metric space and the metric be invariant to . Then, has periodic tracking property. The above results make up for the lack of theory of Lipschitz tracking property, asymptotic average tracking property, and periodic tracking property in infinite product space under group action.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.