Discussion on “on studying extreme values and systematic risks with nonlinear time series models and tail dependence measures”

IF 0.7 Q3 STATISTICS & PROBABILITY
Wen Xu, Huixia Judy Wang
{"title":"Discussion on “on studying extreme values and systematic risks with nonlinear time series models and tail dependence measures”","authors":"Wen Xu, Huixia Judy Wang","doi":"10.1080/24754269.2021.1895528","DOIUrl":null,"url":null,"abstract":"Extreme value theory provides essential mathematical foundations for modelling tail risks and has wide applications. The emerging of big and heterogeneous data calls for the development of new extreme value theory and methods. For studying high-dimensional extremes and extreme clusters in time series, an important problem is how to measure and test for tail dependence between random variables. Section 3.1 of Dr. Zhang’s paper discusses some newly proposed tail dependence measures. In the era of big data, a timely and challenging question is how to study data from heterogeneous populations, e.g. from different sources. Section 3.2 reviews some new developments of extreme value theory for maxima of maxima. The theory and methods in Sections 3.1 and 2.3 set the foundations for modelling extremes of multivariate and heterogeneous data, and we believe they have wide applicability. We will discuss two possible directions: (1) measuring and testing of partial tail dependence; (2) application of the extreme value theory for maxima of maxima in highdimensional inference.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"5 1","pages":"26 - 30"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2021.1895528","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1895528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme value theory provides essential mathematical foundations for modelling tail risks and has wide applications. The emerging of big and heterogeneous data calls for the development of new extreme value theory and methods. For studying high-dimensional extremes and extreme clusters in time series, an important problem is how to measure and test for tail dependence between random variables. Section 3.1 of Dr. Zhang’s paper discusses some newly proposed tail dependence measures. In the era of big data, a timely and challenging question is how to study data from heterogeneous populations, e.g. from different sources. Section 3.2 reviews some new developments of extreme value theory for maxima of maxima. The theory and methods in Sections 3.1 and 2.3 set the foundations for modelling extremes of multivariate and heterogeneous data, and we believe they have wide applicability. We will discuss two possible directions: (1) measuring and testing of partial tail dependence; (2) application of the extreme value theory for maxima of maxima in highdimensional inference.
关于“用非线性时间序列模型和尾部相关测度研究极值和系统风险”的讨论
极值理论为尾部风险建模提供了必要的数学基础,具有广泛的应用前景。大数据和异构数据的出现呼唤新的极值理论和方法的发展。对于研究时间序列中的高维极值和极值簇,一个重要的问题是如何测量和检验随机变量之间的尾部相关性。张博士论文的3.1节讨论了一些新提出的尾部依赖度量。在大数据时代,如何研究来自异质人群(例如来自不同来源的数据)是一个及时且具有挑战性的问题。第3.2节回顾了最大值的最大值极值理论的一些新进展。3.1节和2.3节中的理论和方法为多元和异构数据的极值建模奠定了基础,我们认为它们具有广泛的适用性。我们将讨论两个可能的方向:(1)部分尾相关性的测量和检验;(2)极值理论在高维推理中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信