Pseudostarlike and pseudoconvex solutions of a differential equation with exponential coefficients

Q3 Mathematics
M. Sheremeta
{"title":"Pseudostarlike and pseudoconvex solutions of a differential equation with exponential coefficients","authors":"M. Sheremeta","doi":"10.30970/ms.56.1.39-47","DOIUrl":null,"url":null,"abstract":"Dirichlet series $F(s)=e^{s}+\\sum_{k=1}^{\\infty}f_ke^{s\\lambda_k}$ with the exponents $1<\\lambda_k\\uparrow+\\infty$ and the abscissa of absolute convergence $\\sigma_a[F]\\ge 0$ is said to be pseudostarlike of order $\\alpha\\in [0,\\,1)$ and type $\\beta \\in (0,\\,1]$ if$\\left|\\dfrac{F'(s)}{F(s)}-1\\right|<\\beta\\left|\\dfrac{F'(s)}{F(s)}-(2\\alpha-1)\\right|$\\ for all\\ $s\\in \\Pi_0=\\{s\\colon \\,\\text{Re}\\,s<0\\}$. Similarly, the function $F$ is said to be pseudoconvex of order $\\alpha\\in [0,\\,1)$ and type $\\beta \\in (0,\\,1]$ if$\\left|\\dfrac{F''(s)}{F'(s)}-1\\right|<\\beta\\left|\\dfrac{F''(s)}{F'(s)}-(2\\alpha-1)\\right|$\\ for all\\ $s\\in \\Pi_0$. Some conditions are found on the parameters $b_0,\\,b_1,\\,c_0,\\,c_1,\\,\\,c_2$ and the coefficients $a_n$, under which the differential equation $\\dfrac{d^2w}{ds^2}+(b_0e^{s}+b_1)\\dfrac{dw}{ds}+(c_0e^{2s}+c_1e^{s}+c_2)w=\\sum\\limits_{n=1}^{\\infty}a_ne^{ns}$has an entire solution which is pseudostarlike or pseudoconvex of order $\\alpha\\in [0,\\,1)$ and type $\\beta \\in (0,\\,1]$. It is proved that by some conditions for such solution the asymptotic equality holds  $\\ln\\,\\max\\{|F(\\sigma+it)|\\colon t\\in {\\mathbb R}\\}=\\dfrac{1+o(1)}{2}\\left(|b_0|+\\sqrt{|b_0|^2+4|c_0|}\\right)$ as $\\sigma \\to+\\infty$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.1.39-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Dirichlet series $F(s)=e^{s}+\sum_{k=1}^{\infty}f_ke^{s\lambda_k}$ with the exponents $1<\lambda_k\uparrow+\infty$ and the abscissa of absolute convergence $\sigma_a[F]\ge 0$ is said to be pseudostarlike of order $\alpha\in [0,\,1)$ and type $\beta \in (0,\,1]$ if$\left|\dfrac{F'(s)}{F(s)}-1\right|<\beta\left|\dfrac{F'(s)}{F(s)}-(2\alpha-1)\right|$\ for all\ $s\in \Pi_0=\{s\colon \,\text{Re}\,s<0\}$. Similarly, the function $F$ is said to be pseudoconvex of order $\alpha\in [0,\,1)$ and type $\beta \in (0,\,1]$ if$\left|\dfrac{F''(s)}{F'(s)}-1\right|<\beta\left|\dfrac{F''(s)}{F'(s)}-(2\alpha-1)\right|$\ for all\ $s\in \Pi_0$. Some conditions are found on the parameters $b_0,\,b_1,\,c_0,\,c_1,\,\,c_2$ and the coefficients $a_n$, under which the differential equation $\dfrac{d^2w}{ds^2}+(b_0e^{s}+b_1)\dfrac{dw}{ds}+(c_0e^{2s}+c_1e^{s}+c_2)w=\sum\limits_{n=1}^{\infty}a_ne^{ns}$has an entire solution which is pseudostarlike or pseudoconvex of order $\alpha\in [0,\,1)$ and type $\beta \in (0,\,1]$. It is proved that by some conditions for such solution the asymptotic equality holds  $\ln\,\max\{|F(\sigma+it)|\colon t\in {\mathbb R}\}=\dfrac{1+o(1)}{2}\left(|b_0|+\sqrt{|b_0|^2+4|c_0|}\right)$ as $\sigma \to+\infty$.
一类指数系数微分方程的拟星解和拟凸解
狄利克雷级数 $F(s)=e^{s}+\sum_{k=1}^{\infty}f_ke^{s\lambda_k}$ 用指数表示 $1<\lambda_k\uparrow+\infty$ 以及绝对收敛的横坐标 $\sigma_a[F]\ge 0$ 据说是有序的伪星形 $\alpha\in [0,\,1)$ 输入 $\beta \in (0,\,1]$ 如果$\left|\dfrac{F'(s)}{F(s)}-1\right|<\beta\left|\dfrac{F'(s)}{F(s)}-(2\alpha-1)\right|$ 对所有人 $s\in \Pi_0=\{s\colon \,\text{Re}\,s<0\}$. 类似地,函数 $F$ 说是阶伪凸吗 $\alpha\in [0,\,1)$ 输入 $\beta \in (0,\,1]$ 如果$\left|\dfrac{F''(s)}{F'(s)}-1\right|<\beta\left|\dfrac{F''(s)}{F'(s)}-(2\alpha-1)\right|$ 对所有人 $s\in \Pi_0$. 在参数上发现了一些条件 $b_0,\,b_1,\,c_0,\,c_1,\,\,c_2$ 系数 $a_n$下的微分方程$\dfrac{d^2w}{ds^2}+(b_0e^{s}+b_1)\dfrac{dw}{ds}+(c_0e^{2s}+c_1e^{s}+c_2)w=\sum\limits_{n=1}^{\infty}a_ne^{ns}$有一个完整的解是伪星形的还是有序的伪凸的 $\alpha\in [0,\,1)$ 输入 $\beta \in (0,\,1]$。在此解的某些条件下,证明了渐近等式成立$\ln\,\max\{|F(\sigma+it)|\colon t\in {\mathbb R}\}=\dfrac{1+o(1)}{2}\left(|b_0|+\sqrt{|b_0|^2+4|c_0|}\right)$ as $\sigma \to+\infty$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信