A Uniformly Convergent Collocation Method for Singularly Perturbed Delay Parabolic Reaction-Diffusion Problem

Q3 Mathematics
Fasika Wondimu Gelu, G. Duressa
{"title":"A Uniformly Convergent Collocation Method for Singularly Perturbed Delay Parabolic Reaction-Diffusion Problem","authors":"Fasika Wondimu Gelu, G. Duressa","doi":"10.1155/2021/8835595","DOIUrl":null,"url":null,"abstract":"In this article, a numerical solution is proposed for singularly perturbed delay parabolic reaction-diffusion problem with mixed-type boundary conditions. The problem is discretized by the implicit Euler method on uniform mesh in time and extended cubic B-spline collocation method on a Shishkin mesh in space. The parameter-uniform convergence of the method is given, and it is shown to be - uniformly convergent of , where and denote the step size in time and number of mesh intervals in space, respectively. The proposed method gives accurate results by choosing suitable value of the free parameter . Some numerical results are carried out to support the theory.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":"2021 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/8835595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

Abstract

In this article, a numerical solution is proposed for singularly perturbed delay parabolic reaction-diffusion problem with mixed-type boundary conditions. The problem is discretized by the implicit Euler method on uniform mesh in time and extended cubic B-spline collocation method on a Shishkin mesh in space. The parameter-uniform convergence of the method is given, and it is shown to be - uniformly convergent of , where and denote the step size in time and number of mesh intervals in space, respectively. The proposed method gives accurate results by choosing suitable value of the free parameter . Some numerical results are carried out to support the theory.
奇摄动时滞抛物型反应扩散问题的一致收敛配置方法
本文给出了一类具有混合型边界条件的奇摄动时滞抛物型反应扩散问题的数值解。在时间上采用均匀网格上的隐式欧拉法,在空间上采用Shishkin网格上的扩展三次b样条配点法对问题进行离散。给出了该方法的参数一致收敛性,并证明了该方法的-一致收敛性,其中和分别表示时间上的步长和空间上的网格间隔数。该方法通过选择合适的自由参数值,得到了准确的结果。一些数值结果支持了这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信